The p-Laplace equation
Topic outline
-
The most important partial differential equation of the second order is the celebrated
Laplace equation. This is the prototype for linear elliptic equations. It is
less well-known that it also has a non-linear counterpart, the so-called p-Laplace
equation (or p-harmonic equation), depending on a parameter p. The p-Laplace
equation has been much studied during the last fifty years and its theory is by now
rather developed. Some challenging open problems remain. The p-Laplace equation
is a degenerate or singular elliptic equation in divergence form. It deserves a
treatise of its own, without any extra complications and generalizations. This is
my humble attempt to write such a treatise. Perhaps the interested reader wants to
consult the monograph Nonlinear Potential Theory of Degenerate Elliptic Equations
by J. Heinonen, T. Kilpel¨ainen and O. Martio, when it comes to more advanced and
general questions.
-
- Enseignant de la matière : Dr. Kamila Kachekouche, Contact : kamila.kachekouche01@gmail.com
- Faculté de sciences
- Département de Mathematiques
- Filière : Mathematiques
- Niveau : M1 commun
- Unité d'enseignement : Fondamentale
- Coefficient : 2
- Crédit : 4
- Volume horaire de travail requis/semaine : 1h
- Modalité du suivi : Dimanche de 10h00 à 11h00.
- Modalité d'évaluation : TP 50%, Examen finale 50%.
- Note du CC = 20% Moyenne des tests + 20% Devoir 1 + 20% Devoir 2 + 20% Devoir 3 + 20 % Présence et participation.
-
ce cours donne les propriétés de l'operateur p-Laplace qui vous aide dans l'étude mathématique d'une equations avec l'operateur p-Laplacien
-
-
-
-
-
-
-