Function vocabulary
Conditions d'achèvement
Fonction / Function, map, mapping
- abscisse (d’un point), ordonnée / x-coordinate, y-coordinate
- accolade / brace
- analyse (en tant que domaine des mathématiques) / calculus
- axe des abscisses, axe des ordonnées / x-axis, y-axis
- coefficient directeur / slope
- cosinus, sinus / cosine, sine
- courbe paramétrée / parametric curve
- courbe représentative / graph
- associer y à x / to map x onto y
- antécédent / pre-image (less frequently : counterimage or inverse image)
- comportement aux infinis (d’une fonction) / end behaviour
- continu (par morceaux) / (piecewise) continuous
- décroissance exponentielle / exponential decay
- dérivée / derivative
- dériver / to differentiate
- fonction / function, map, mapping
- Injective, bijective, surjective
- fonction bijective / bijective function, one-to-one correspondence (≠ one-to-one function)
- fonction injective / injective function, one-to-one function (≠ one-to-one correspondence cf. above)
- fonction surjective / surjective function, onto function
- forme canonique (d’un polynôme du second degré) / vertex form
- la limite de f (x) quand x tend vers a est l / the limit of f as x approaches a equals/is l
- fonction définie par morceaux / piecewise-defined function
- a piecewise-defined function is a function defined by multiple sub-functions, where each sub-function applies to a different interval in the domain.
- ordonnée à l’origine / y-intercept
- point d’inflexion / inflection point
- primitive / antiderivative, primitive function, indefinite integral
- système de coordonnées, repère / coordinate system
Monotonie / monotonic, monotone function
- fonction croissante / increasing function or nondecreasing function
- fonction décroissante / decreasing function or nonincreasing function
- fonction monotone / monotonic function, monotone function
- In calculus, a function defined on a subset of the real numbers with real values is called monotonic if and only if it is either entirely non-increasing, or entirely non-decreasing.
- A function is called monotonically increasing (also increasing or non-decreasing), if for all and such that one has , so preserves the order .
- Likewise, a function is called monotonically decreasing (also decreasing or non-increasing) if for all and such that one has ,, so it reverses the order
- Attention, l’anglais est trompeur ici : la négation de « est croissante » n’est pas « est décroissante » et réciproquement.
Fonction affine et linéaire
- Fonctions affines / linear function (or affine)
- coefficient directeur / slope
- ordonnée à l'origine / y-intercept
- Fonctions linéaires / homogeneous linear function
- A linear function is a polynomial function in which the variable x has degree at most one: .
- Such a function is called linear because its graph, the set of all points in the Cartesian plane, is a line.
- The coefficient a is called the slope of the function and of the line (see below)
- The coefficient b is called the y-intercept
- If the slope is , this is a constant function defining a horizontal line, which some authors exclude from the class of linear functions.
- If then the linear function is said to be homogeneous.
- Such function defines a line that passes through the origin of the coordinate system, that is, the point .
- In advanced mathematics texts, the term linear function often denotes specifically homogeneous linear functions, while the term affine function is used for the general case, which includes .
Fonction inverse, fonction réciproque, opposé
- La fonction bijection réciproque (ou fonction réciproque ou réciproque) / the inverse function of
- In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of .
- The inverse of exists if and only if is bijective, and if it exists, is denoted by .
- The inverse sine of denoted by or .
- The function is invertible if and only if it is bijective.
- La fonction inverse : / the reciprocal function
- The reciprocal function, the function that maps to , is one of the simplest examples of a function which is its own inverse (an involution).
- The reciprocal function: . For every except 0, represents its multiplicative inverse. The graph forms a rectangular hyperbola.
- Inverse d'un nombre, d'une fonction / multiplicative inverse or reciprocal ou just inverse
In mathematics, a multiplicative inverse or reciprocal for a number , denoted by or , is a number which when multiplied by yields the multiplicative identity, 1.
- In the phrase multiplicative inverse, the qualifier multiplicative is often omitted and then tacitly understood (in contrast to the additive inverse).
- The notation is sometimes also used for the inverse function of the function , which is not in general equal to the multiplicative inverse.
- For example, the multiplicative inverse is the cosecant of , and not the inverse sine of denoted by or .
- Opposé d'un nombre / additive inverse, opposite number
- In mathematics, the additive inverse of a number is the number that, when added to , yields zero.
- This number is also known as the opposite (number), sign change, and negation.
- For a real number, it reverses its sign: the additive inverse (opposite number) of a positive number is negative, and the additive inverse of a negative number is positive. Zero is the additive inverse of itself.
- Inverse function rule
- In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function in terms of the derivative of .
- More precisely, if the inverse of is denoted as , then the inverse function rule is, in Lagrange's notation :
Modifié le: lundi 18 novembre 2024, 09:54