Fonction / Function, map, mapping

  • abscisse (d’un point), ordonnée / x-coordinate, y-coordinate
  • accolade / brace
  • analyse (en tant que domaine des  mathématiques) / calculus
  • axe des abscisses, axe des ordonnées  / x-axis, y-axis
  • coefficient directeur / slope
  • cosinus, sinus / cosine, sine
  • courbe paramétrée / parametric curve
  • courbe représentative / graph
  • associer y à x / to map x onto y
  • antécédent / pre-image (less frequently : counterimage or inverse image)
  • comportement aux infinis (d’une fonction) / end behaviour
  • continu (par morceaux) / (piecewise) continuous
  • décroissance exponentielle / exponential decay
  • dérivée / derivative
  • dériver / to differentiate
  • fonction / function, map, mapping
  • Injective, bijective, surjective
    • fonction bijective / bijective function, one-to-one correspondence (≠ one-to-one function)
    • fonction injective / injective function, one-to-one function (≠ one-to-one correspondence cf. above)
    • fonction surjective / surjective function, onto function
        
  • forme canonique (d’un polynôme du second degré) / vertex form
  • la limite de f (x) quand x tend vers a est l / the limit of f as x approaches a equals/is l
  • fonction définie par morceaux / piecewise-defined function
    • a piecewise-defined function is a function defined by multiple sub-functions, where each sub-function applies to a different interval in the domain.
  • ordonnée à l’origine / y-intercept
  • point d’inflexion / inflection point
  • primitive / antiderivative, primitive function, indefinite integral
  • système de coordonnées, repère / coordinate system

Monotonie / monotonic, monotone function

  • fonction croissante / increasing function or nondecreasing function
  • fonction décroissante / decreasing function or nonincreasing function 
  • fonction monotone / monotonic function, monotone function
    • In calculus, a function f defined on a subset of the real numbers with real values is called monotonic if and only if it is either entirely non-increasing, or entirely non-decreasing.
    • A function is called monotonically increasing (also increasing or non-decreasing), if for all x and y such that xy one has f(x)f(y), so f preserves the order .
    • Likewise, a function is called monotonically decreasing (also decreasing or non-increasing) if for all x and y such that xy one has f(x)f(y),, so it reverses the order
  • Attention, l’anglais est trompeur ici : la négation de « f est croissante » n’est pas « f est décroissante » et réciproquement.

 

Fonction affine et linéaire

  • Fonctions affines / linear function (or affine)
    • coefficient directeur / slope
    • ordonnée à l'origine / y-intercept
  • Fonctions linéaires /  homogeneous linear function  
    • linear function is a polynomial function in which the variable x has degree at most one: f(x)=ax+b .
    • Such a function is called linear because its graph, the set of all points (x,f(x)) in the Cartesian plane, is a line.
    • The coefficient a is called the slope of the function and of the line (see below)
    • The coefficient b is called the y-intercept
    • If the slope is a=0 , this is a constant function f(x)=b defining a horizontal line, which some authors exclude from the class of linear functions.
    • If b=0 then the linear function is said to be homogeneous.
      • Such function defines a line that passes through the origin of the coordinate system, that is, the point (x,y)=(0,0) .
    • In advanced mathematics texts, the term linear function often denotes specifically homogeneous linear functions, while the term affine function is used for the general case, which includes b0.

 

Fonction inverse, fonction réciproque, opposé 

  • La fonction bijection réciproque (ou fonction réciproque ou réciproque) / the inverse function of
    • In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f.
    • The inverse of f exists if and only if f is bijective, and if it exists, is denoted by f1.
    • The inverse sine of x denoted by sin1x  or arcsinx.
    • The function f is invertible if and only if it is bijective.
       
  • La fonction inverse : x1x / the reciprocal function
    • The reciprocal function, the function f that maps x to 1x, is one of the simplest examples of a function which is its own inverse (an involution).
    • The reciprocal function: y=1/x. For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola.

450px Hyperbola one over x

  • Inverse d'un nombre, d'une fonction / multiplicative inverse or reciprocal ou just inverse
    • In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1x or x1, is a number which when multiplied by x yields the multiplicative identity, 1.

    • In the phrase multiplicative inverse, the qualifier multiplicative is often omitted and then tacitly understood (in contrast to the additive inverse).
    • The notation f1 is sometimes also used for the inverse function of the function f(x), which is not in general equal to the multiplicative inverse.
    • For example, the multiplicative inverse 1sinx=(sinx)1 is the cosecant of x, and not the inverse sine of x denoted by sin1x  or arcsinx.
       
  • Opposé d'un nombre / additive inverse, opposite number
    • In mathematics, the additive inverse of a number a is the number that, when added to a, yields zero.
    • This number is also known as the opposite (number), sign change, and negation.
    • For a real number, it reverses its sign: the additive inverse (opposite number) of a positive number is negative, and the additive inverse of a negative number is positive. Zero is the additive inverse of itself.
        
  • Inverse function rule
    • In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f.
    • More precisely, if the inverse of f is denoted as f1, then the inverse function rule is, in Lagrange's notation :

Last modified: Monday, 18 November 2024, 9:54 AM