TD 3

EX. 1:

Montrez que la fonction paramètre $\phi = c_1 + c_2 x$ de l'élément unidimensionnel à deux nœuds satisfait la condition de compatibilité des problèmes C⁰-continus.

EX. 2:

Montrez que les fonctions de forme $N_i = \frac{1}{2}(1-\xi)$ et $N_j = \frac{1}{2}(1+\xi)$ de l'élément unidimensionnel à deux nœuds sont données par les équations $N_i = \frac{x_j - x}{x_j - x_i}$ et $N_j = \frac{x - x_i}{x_j - x_i}$.

EX. 3:

Montrez que $N_i = L_i$ dans un élément triangulaire à trois nœuds .

EX. 4:

Evaluez l'intégrale $\int_A N_i N_j h dA$ sur l'élément rectangulaire à quatre nœuds en supposant que h est constant.

EX. 5:

Evaluez l'intégrale $\int_{x_i}^{x_j} [N] \gamma A dx$ sur l'élément unidimensionnel à deux nœuds en utilisant les coordonnées de longueur et en supposant que γ et A sont constants.

EX. 6:

Evaluez l'intégrale $\int_A N_i N_j h dA$ sur l'élément triangulaire à trois nœuds en utilisant les coordonnées d'aire et en supposant que h est constant.

EX. 7:

Montrez que les fonctions de forme de l'élément unidimensionnel à deux nœuds possèdent les trois propriétés des fonctions de forme C⁰-continues.