TD n°2 Purification des enzymes

Exercice n°1:

10μL de l'extrait uréasique produisent en une minute 3 μmoles d'ammoniac à pH 7 et à 30°C.

- 1-Quelle est l'activité en mol/s de 1mL d'extrait uréasique ?
- 2-Quelle est l'activité spécifique (en moles de substrat/s.mg) si l'extrait contient 7mg de protéines par mL?
- 3-On purifie l'extrait par chromatographie pour éliminer certaines protéines non enzymatique. Les protéines récupérées se retrouvent dans une solution à 24 mg de protéine par mL de solution. 10µL de cette nouvelle solution transforment 26 µmoles de substrats en 4 secondes. Quelle est l'activité spécifique de cette nouvelle solution enzymatique (en moles de substrat/s.mg) ?
- 4-On poursuit la purification par 2 nouvelles chromatographies d'échange d'ions.

On obtient une préparation à 28mg de protéines par mL; 10µL de cette solution transforment 30µmoles de substrat en 2 secondes.

Quelle est l'activité spécifique en mol/s.mg?

5-Une dernière chromatographie donne une solution à 41mg de protéines par mL; 10µL de cette solution transforment 22µmoles de substrat en une seconde.

Quelle est l'activité spécifique en mol/s.mg?

Conclure.

Exercice n°2:

L'acétylcholinestérase est une enzyme catalysant l'hydrolyse :

$$CH_3-C-0-CH_2-CH_2-N^+ + H_2O$$
 $CH_3-C-0-H + CH_2OH-CH-N^+(CH_3)$

La détermination de son activité catalytique peut se faire de la façon suivante : un volume de solution d'enzymes contenant **x** mg de protéine est ajouté à une solution d'acétylcholine (en excès). On amène le pH initial à 7 et la température à 30°C.

Le pH a tendance à diminuer à cause de l'acide libéré ; on détermine donc le volume V en cm³ de solution d'hydroxyde de sodium exactement 0,01mol.dm⁻³ nécessaire, par minute, pour maintenir le pH à sa valeur initiale

On compare 2 techniques de purification de cette enzyme à partir d'un broyat de tissus animal (voir tableau)

1-Technique : utilisation de procédés classiques ;

2-Technique : utilisation de la chromatographie d'affinité

Fraction	Masse totale de protéines contenues dans la fraction : mg	x utilisé pour l'essai : mg	Volume V mesurée lors de l'essai : cm ³ NaOH (0,01mol.dm ³ par min)	Activité catalytique spécifique : U.mg ⁻¹	Activité catalytique totale : U	Rendement %	Enrichis- sement
1 ^{ère} technique : utilisation de procédés classiques							
I ₁ : tissus frais homogénéisé on précipite par (NH ₄) ₂ SO ₂	120	0,1	5,20		-		
II ₁ : fraction I soumise à une chromatographie s DEAE-cellulose	1 4	0,01	2,30				
III _{1:} concentration dialyse	13	0,01	2,40				
IV _{1:} gel-filtration s Séphadex G200	6,5	0,01	4,20				
V ₁ : Fraction pass sur DEAE-cellulos	e 1,3	0,01	7,90				
2 ^{ème} technique : utilisation de la chromatographie							
I ₂ : tissus frais homogénéisé On précipite par (NH ₄) ₂ SO ₂ redissolution du cu	140	0,1	4,7				
II ₂ : fraction I ₂ soumise à une chromatographie d'affinité	4,7	0,01	9,75				

- 1- Compléter numériquement le tableau en faisant figurer pour chaque fraction :
 - -l'activité catalytique spécifique en U.mg⁻¹
 - -l'activité catalytique totale de la fraction ;
 - -le rendement (pourcentage de récupération de l'activité par rapport à la première étape)
 - -l'enrichissement (coefficient de purification par rapport à la première étape).

N.B: 1 unité U correspond à la quantité d'enzyme qui, dans les conditions du dosage, convertit 1µmol d'acétylcholine par min.

- 2- Comparer les résultats obtenus dans les deux techniques.
- 3- Donner le principe de la chromatographie sur DEAE-cellulose utilisée dans la première technique.
- 4- La chromatographie d'affinité employée dans la 2^{ème} technique est une chromatographie sur colonne. La colonne est constituée par des particules d'agarose où sont fixées, de façon covalente, des molécules d'un inhibiteur compétitif de l'acétylcholinestérase :

$$CH_3$$
 CH_3
 N^*
 NH
 CH_3
 $CH_$

L'enzyme à isoler se lie par l'intermédiaire de son site actif et on doit l'éluer par une solution contenant la molécule de ligand libre (inhibiteur compétitif). Justifier les résultats obtenus avec la 2^{ème} technique de purification.

Responsable: Mme BENMANSOUR M.