TRAVAUX DIRIGES 2: INVENTAIRE DES PEUPLEMENTS FORESTIERS

Travail demandé et à envoyer à l'adresse email : mbellifa@yahoo.fr

A partir des données figurant sur le tableau ci-dessus ainsi que les intitulés de colonnes ; je vous invite à déterminer

- 1- le Nombre de tiges théoriques et indiquer les différences par classe entre les observations et le nombre théorique.
- 2 Faire apparaître les courbes du nombre théorique et des observations
- 3 Déterminer le nombre des tiges par classe de grosseur en fonction de la loi normale (Gauss) soit
- * 68% des tiges ayant la valeur du diamètre moyen +ou 1 écart type
- * 95% des tiges ayant la valeur du diamètre moyen + ou -2 écarts type
- * 98% des tiges ayant la valeur du diamètre moyen +ou 3 écart type

LE CORRIGE VOUS SERA ENVOYE DES QUE JE RECOIS VOS REPONSES (15 JOURS)

S'il y a des questions n'hésiter pas de me les envoyées à l'adresse email

La fréquence (%) du nombre théorique par classe des tiges est calculé sur la base de la fréquence f(x) sur la somme des f(x) =Y%

 $Y\% = f(xi) / \sum f(xi)$

REPARTITION DESTIGES D'UN PEUPLEMENT EQUIENNE

														f(x) /som(f(x))		N x Yi	
nbr obs	СС	NI XI	m	Xi_M	EC	U	U ²	u²/2	1/rc2Pl	е	e puis- u²:2	f(x)	SOM f(x)	Yi	N	ni theor	СС
1	50	50															
	60																
12	70	840															
26	80	2080															
34	90	3060															
45	100	4500															
81	110	8910															
111	120	13320															
160	130	20800															
154	140	21560															
91	150	13650															
63	160	10080															
16	170	2720															
9	180	1620															
6	190	1140															
1	200	200															
2	210	420															
1	220	220															

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2}$$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	СС	NI XI	m	Xi-M	EC	U	U²	u²/2	1/RC2PI	E	e puis- u²:2	f(x)	SOM f(x)	Yi	N	ni theor

nbr obs = Nombre des arbres (observations)

CC = Classe de grosseur (circonférence)

 $NIXI = 1 \times 2$ (Nombre x classes de grosseurs)

m = moyenne arithmétique de la somme des observations x clases de grosseurs (∑Ni.Xi/N) = valeur du diamètre moyen.

Xi -m = la classe de grosseur - la valeur du diamètre moyen

EC = Ecart type des observations

U = (Xi - m)/EC

 $U^2 = U X U$

U² = la moitié de U²

1/rcpi = 1/ racine carrée de 2pi

e = valeur de la base logarithmique népérien

epuis-u²:2 = e puissance -(moins) U/2

f(x) = colonne

10 x colonne12

som f(x) = somme des f(x)

Y% = f(x)/SOM f(x) Fréquence théorique de la répartition des observations = Nombre de tiges

Théoriques

N = Nombre désirée par classe de grosseur (densité)

Nombre théorique par classe de grosseur pour un peuplement équienne suivant la densité désirée