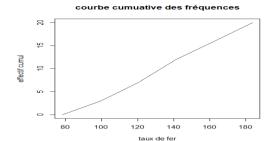
Exercice 1 78.5 83.0 98.0 100.1 102.0 113.8 119.6 128.5 129.3 131.6 136.2 139.2 147.3 155.7 157.3 157.4 162.6 172.1 183.3

1) la règle de Yule donne 2.5*(20^0.25)=5.28, nous considérons alors k=5.

I la longueur de la classe est l=Etendu de la série/k = 104.8/5 = 20.96 on prend l= 21

Classes	Ci	ni	n _i cum	fi	f_i^{cum}
[78.5, 99.5[89	3	3	0.15	0.15
[99.5, 120.5[110	4	7	0.2	0.35
[120.5, 141.5[131	5	12	0.25	0.6
[141.5, 162.5[152	4	16	0.2	8.0
[162.5, 183.5[173	4	20	0.2	1

2)



3) Q1=110.850, Q2= 133.900 , Q3= 157.325

Intervalle inter quantile= Q3- Q1= 157.325- 110.850=46.475

4)

Classes	Ci	ni	n _i *c _i	n _i *c _i ²
[78.5, 99.5[89	3	267	23763
[99.5, 120.5[110	4	440	48400
[120.5, 141.5[131	5	655	85805
[141.5, 162.5[152	4	608	92416
[162.5, 183.5[173	4	692	119716

Somme

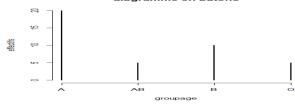
20 2662 370100

 \bar{x} = 133.1, V= (370100/20)- 133.1^2 =789.39, ecart type=789.39^0.5 =28.09609

Exercice 2 échantillon : un groupe de personnes n=40, X : la variable donnant le groupe sanguin, ses modalités sont A, B, AB, O (qualitative)

Somme(fréquences)=40 alors ?=5

Le mode est A



Χı	nı	n_i^{cum}
Α	20	20
В	10	30
AB	5	35
0	5	40

Les quartiles sont Q1 la modalité qui a $n_i^{cum} \ge 0.25*40=10$ alors Q1=A

Q2 la modalité qui a $n_i^{cum} \ge 0.5*40=20$ alors Q2=A

Q3 la modalité qui a n_i^{cum} ≥ 0.75*40= 30 alors Q3=B

Exercice 3

1) X: le nombre d'articles vendus par jour, une variable quantitative discrète

2)

Xi	ni	fi	n _i cum	f i ^{cum}	n _i * x _i	$n_i^* x_i^2$
5	3	0.0577	3	0.0577	15	75
6	1	0.0192	4	0.0769	6	36
7	2	0.0384	6	0.1153	14	98
8	4	0.0769	10	0.1922	32	256
9	7	0.1346	17	0.3268	63	567
10	5	0.0962	22	0.4230	50	500
11	8	0.1538	30	0.5768	88	968
12	8	0.1538	38	0.7306	96	1152
13	3	0.0577	41	0.7883	39	507
14	6	0.1154	47	0.9037	84	1176
15	3	0.0577	50	0.9614	45	675
16	2	0.0384	52	0.9998	32	512

564 6522

3)

Il y a deux modes 11 et 12

4)Q1=9, Q2= 11, Q3= 13 (on procède comme l'exercice précédent)

 \bar{x} =10.84615, V=(6522/52)- 10.84615^2= 7.784107, ecart type= 2.790001

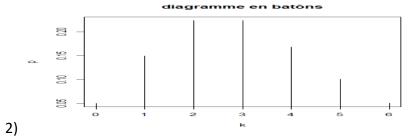
Exercice 4 1)X décompte de succès parmi 5 épreuves indépendantes de même probabilité de succès p=0.9

X suit la loi binomiale B(5, 0.9)

- 2) $p(X=2) = C_5^2 \cdot 0.9^2 \cdot (1-0.9)^3 = 0.0081$
- 3) $p(X \ge 3) = p(X = 3) + p(X = 4) + p(X = 5) = 0.0729 + 0.32805 + 0.59049 = 0.99144$

Exercice 5 $p[X = k] = e^{-3} (3^k/k!)$

1) p[X = 0] = 0.04978707, p[X = 1] = 0.1494, p[X = 2] = 0.2240, p[X = 3] = 0.2240, p[X = 4] = 0.1680, p[X = 5] = 0.1008, p[X = 6] = 0.0504.



3) $p[X \ge 2] = 1 - [p(X=0) + p(X=1)] = 1 - 0.05 - 0.15 = 0.8$

Exercice 6 p($X \le 24$)= p((X-20)/5) $\le (24-20)/5$) =F(0.8)= 0.7881 p($X \ge 18.2$)=1-p($X \le 18.2$)=1-p((X-20)/5) $\le (18.2-20)/5$)=1-0.3594=0.6406 p($X \le 21.6$)=F((21.6-20)/5)-F((21-20)/5)=0.04625 il faut penser à centre et réduire, de la table on a (a-20)/5=0.2533, a= 21.2665 il faut penser à centre et réduire, de la table on a (b-20)/5=-0.3585, b=18.2075 il faut penser à centre et réduire, de la table on a (c-20)/5=-0.8416, c=15.792

Exercice 7 p(|X| > c) = 0.1 signifie que d'après la table de la loi de student α =0.1 alors on prend la table de student la colonne 0.1 et la ligne 20 on trouve c =1.725

- 1) $p(Z > 16.47) = \alpha$, à partir de la table de khi deux α =0.9 $P(Z < 44.31) = \beta$, à partir de la table de khi deux β = 0.99
 - 2) p(Z > c) = 0.05, c = 37.65248

Exercice 8 La représentation graphique des données montre que la distribution ne s'éloigne pas de celle d'une normale, alors on peut appliquer les formules pour l'intervalle de confiance.

 \bar{x} = 2065.182, σ = 384.1546, t $\alpha/2$ = 2.228 table de student ligne 10 colonne 0.05 IC= [1806.938, 2323.062]

Les valeurs critiques à partir de la table de khi deux (ligne 10 et colonnes 0 .025 et 0.975) sont 20.48, 3.25 alors on a IC= [72057.67, 454074.2] pour la variance, et pour l'écart type il suffit de calculer la racine des deux bornes IC= [268.43, 673.85]

Exercice 9

- 1. E=1.96*((200 /800)*(1-(200 /800))/800)^0.5=0.03 IC=[0.22, 0.28]
- 2. E=2.576*(0.45*(1-0.45) /1000)^0.5 =0.04 IC=[0.41, 0.49]

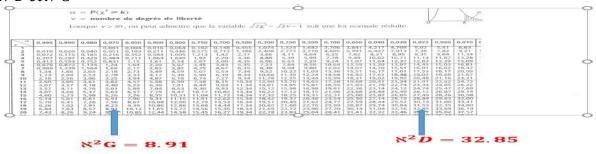
Exercice 10

Les hypothèses à tester H_0 p=0.1, H_1 p<0.1 La statistique de test z=(0.09-0.01)/(0.01*0.99/1012)^0.5 = -1.06 La valeur critique -1.65 Test unilatéral à gauche on compare z à, z> -1.65 Décision alors on ne peut pas rejeter H_0 . Conclusion Il n'y a pas suffisamment de preuves pour confirmer l'affirmation selon laquelle moins de 10% des adultes disent que le clonage des humains devrait être utilisé.

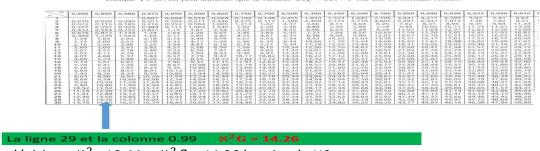
Exercice 11

- 1. les hypothèses à tester H_0 μ =100, H_1 μ \neq 100 la statistique de test t=(102-100)/(15.3/15^0.5)=0.506 les valeurs critiques (la table de student ; la ligne 14 et la colonne 0.05) -2.1448 et 2.1448 la décision -2.1448 < t < 2.1448 alors non rejet de H_0
- 2. les hypothèses à tester H_0 μ =980, H_1 μ \neq 980 la statistique de test z=(950-980)/(30/25^0.5)= -5 les valeurs critiques -1.96 et 1.96 la décision z < -1.96 alors rejet de H_0 .

Exercice 12 Les hypothèses à tester $H_0 \sigma = 15$ $H_1 \sigma \neq 15$ C'est un test bilatéral sur la variance ou l'écart type, on calcule la statistique de test statistique de test $\aleph^2 = (n-1) s^2/\sigma^2 = (20-1)*10^2/15^2 = 8.44$ Les valeurs critiques à partir de la table de khi deux $\aleph^2 D$ et $\aleph^2 G$



La décision $\aleph^2=8.44<\aleph^2G=8.91$ le rejet deH $_0$ Les hypothèses à tester H $_0$ $\sigma=50$ H $_1$ $\sigma<50$ statistique de test $\aleph^2=$ (n-1) $s^2/\sigma^2=$ (30 – 1) *30 $^2/50^2=$ 10.44 Les valeurs critiques il s'agit d'un test unilatéral à gauche, alors il y a une valeur critique \aleph^2G à partir de la table de khi deux



La décision $\aleph^2 = 10.44 < \aleph^2 G = 14.26$ le rejet de H0

Exercice 13 Les hypothèses à tester $H_0 \mu_1 = \mu_2$ $H_1 \mu_1 \neq \mu_2$ La statistique de test $t=(1.46-4.26)/((0.17^2)+(0.47)^2)*(1/50))^0.5=-39.614$ Les valeurs critiques -2.009, 2.009 La décision t < -2.009 alors rejet de H_0

Conclusion il y a suffisamment de preuves pour rejeter l'affirmation que les iris setosa et versicolor ont la même longueur de pétales moyenne.

Exercice 14 Les hypothèses à tester H_0 $p_1=p_2$ H_1 $p_1>p_2$ La statistique de test \bar{p} = (436*(192/436)+121*(40/121)) /(436+121)= 0.416 Z=((192/436)- (40/121)) /(0.416*(1-0.416)*((1/436)+(1/121)))^0.5 = 2.168 Les valeurs critiques -1.96 et 1.96 La décision z > 1.96 alors le rejet de H_0 La conclusion on ne peut pas dire que les deux proportions sont égales

Exercice 15 La différence d: 0.5 2.4 -4.8 4.5 1.4 -1.9 1.2 -7.3 -4.2 -28.5 2.9 3.2 \overline{d} = -2.55 s=8.945 écart type les hypothèses à tester H₀ μ_d = 0 H₁ μ_d \neq 0 la statistique de test t=-2.55/(8.945/12^0.5)= -0.987 les valeurs critiques -2.201 et 2.01 la décision -2.009 < t < -2.009 alors le non rejet de H₀ la conclusion il n'y a pas suffisamment de preuves pour confirmer l'affirmation qu'il y a une différence entre les tailles rapportées et mesurées.