CHAPITRE: Analyse Structurelle

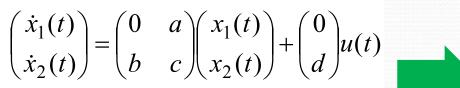
Représentation par graphe orienté

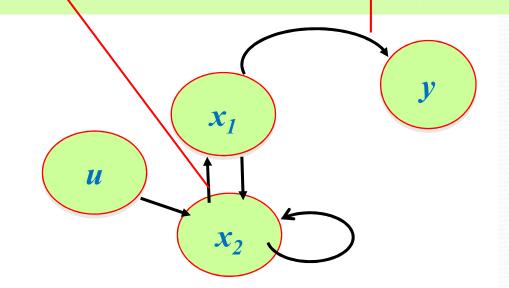
$$\begin{cases} \dot{x} = F(x, u, \Theta) \\ y = g(x, u, \Theta) \end{cases} \Rightarrow \begin{cases} Z = x \cup u \cup y \\ C = f \cup g \end{cases}$$

Représentation Graphe orienté

Arc : représente une influence mutuelle entre les variables

Signifie : L'évolution temporelle de la dérivée \vec{x}_1 dépend de l'évolution temporelle de x₂





 $y(t) = \begin{pmatrix} e & 0 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$

Digraphe: définitions

- Le digraphe?
- Graphique dont l'ensemble des sommets correspond à l'ensemble des entrées u_i , sortie y_j et variables d'état x_k
- et les arcs sont définis comme suit:
 - Il existe un arc du sommet X_k (respectivement du sommet U_l) au sommet X_j si et seulement si la variable d'état x_k (respectivement la variable d'entrée u_i) apparaît réellement dans la fonction F (c'est-à-dire le sommet u_i) de la fonction.
 - Un arc existe du sommet x_k au sommet y_j si et seulement si la variable d'état x_k apparaît réellement dans la fonction g
- Signification physiques
- Digraphe est une abstraction structurelle du modèle de comportement où
 - Un arc représente une influence mutuelle entre les variables:
 - L'évolution temporelle de la dérivée $\mathbf{x_i}$ dépend de l'évolution temporelle de $\mathbf{x_k}$

Matrices Structurées

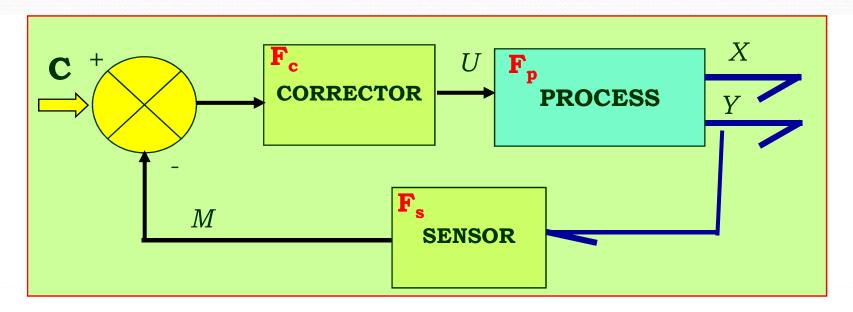
$$y(t) = \begin{pmatrix} e & 0 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$

Digraphes ne représentent pas les contraintes

Déscription Structurelle

- Etant donné un modèle d'un system : une paire (C, Z)
 - $Z = \{z_1, z_2,...z_N\}$ est un ensemble de variables et de paramètres,
 - $C = \{c_1, c_2, ..., c_M\}$ est un ensemble de contraintes
- variables
 - quantitative, qualitative, floues
- Contraintes
 - Equations Algébriques et différentielles,
 - Equations de difference,
 - Règles, etc.
- temps
 - continu, discret

Graphe Biparti



C: ensemble de contraintes

Z: ensemble de variables $Z = \{X\} \cup \{U\} \cup \{Y\} = \{z_1 \quad z_2 \quad \dots \quad z_m\}$

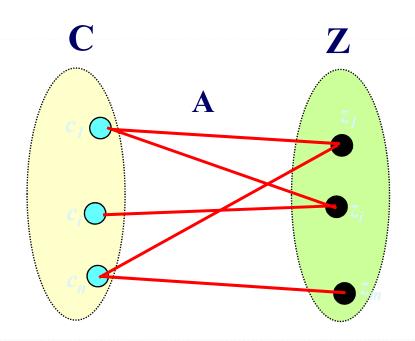
U, subset de variables de contrôle Y, subset de variables mesurées X, subset de variables inconnues K={Y}U{U}

$$S: C \times Z \rightarrow \{0, 1\}$$
$$(f_i, z_i) \rightarrow S(f_i, z_i)$$

Graphe Biparti

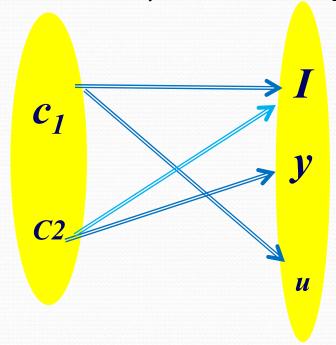
- Un graphe est bipartit si ses sommets peuvent être partitionnés en deux sous-ensembles disjoints de sorte que chaque arête connecte un sommet de C à un sommet de Z.
- Graphe biparti: relie entre variables et contraintes

$$C = \{c_1 \quad c_2 \quad \dots \quad c_n\}$$
 $Z = \{z_1 \quad z_2 \quad \dots \quad z_m\}$
 $A = \{a_1 \quad a_2 \quad \dots \quad a_k\}$

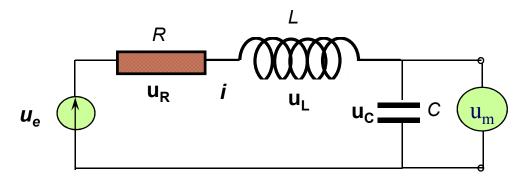


Définition

- le modèle structurel du système (C,Z) est un graphe biparti (C,Z,A),
 - Où A est l'ensemble des arcs défini comme:
 - (c_i, z_j) ∈ A si la variable zj apparait dans la contrainte c_i
 - Example: c_1 : U-Ri=0, c_2 :y= $i \Rightarrow Z={i,u}$



Exemple



Variables:
$$Z = \{z_1 \quad z_2 \quad \dots \quad z_m\}$$

$$Z = \{u_m \quad u_e \quad u_R \quad u_L \quad u_C \quad i \quad z_1 \quad z_2\}$$

K=variables connues X=variables inconnues

Constraints
$$C = \{c_1 \quad c_2 \quad \dots \quad c_n\}$$

$$\begin{cases} c_1 : u_R - Ri = 0 \\ c_2 : u_L - L \frac{di}{dt} = 0 \end{cases}$$

$$c_3 : i - C \frac{du_C}{dt} = 0$$

$$c_4 : u_m - F(u_C) = 0$$

$$c_5 : u_e - u_R - u_L - u_C = 0$$

$$c_6 : z_1 = \frac{di}{dt}$$

$$c_7 : z_2 - \frac{du_C}{dt} = 0$$

Exemple: graph biparti

Constraints

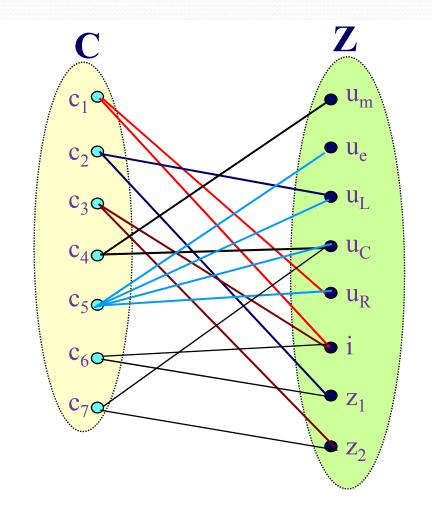
$$\begin{cases} \mathbf{c}_1 : u_R - Ri = 0 \\ \mathbf{c}_2 : u_L - L \frac{di}{dt} = 0 \end{cases}$$

$$\begin{aligned} \mathbf{c}_3 : C \frac{du_C}{dt} - i &= 0 \\ \mathbf{c}_4 : u_m - F(u_C) &= 0 \end{aligned}$$

$$\begin{aligned} \mathbf{c}_5 : u_e - u_R - u_L - u_C &= 0 \end{aligned}$$

$$\begin{aligned} \mathbf{c}_6 : z_1 &= \frac{di}{dt} \end{aligned}$$

$$\begin{aligned} \mathbf{c}_7 : z_2 &= \frac{du_C}{dt} = 0 \end{aligned}$$



$$Z = \{u_m \quad u_e \quad u_R \quad u_L \quad u_C \quad i \quad z_1 \quad z_2\}$$

Matrice d'Incidence

Variables Z

Variables inconnues

variables connues

	/								
	F/Z	u_R	u_L	u_C	i	z_1	z_2	u_m	u_e
	C ₁	1	0	0	1	0	0	0	0
	C ₂	0	1	0	1	0	0	0	0
	C ₃	0	0	1	1	0	0	0	0
	C ₄	0	0	1	0	0	0	1	0
	C ₅	1	1	1	0	0	0	0	1
	C ₆	0	0	0	1	1	0	0	0
	C ₇	0	0	1	0	0	1	0	0

La matrice d'incidence est une matrice où les lignes et les colonnes représentent l'ensembles des contraintes et des variables respectivement. Chaque arc (c_i, z_j) est représenté par« 1 » dans l'intersection de c_i et z_j.

$$b_{ij}=1$$
 si $z_j \in c_i$
Sinon $b_{ii}=0$

La matrice d'incidence est la numérisation du graphe biparti (C,Z,A), càd la représentation numérique du graphe .

Définitions

- Définition 1.
 - On appelle structure du système le graphe bi-parti *G*(*C*, *Z*, *A*) où *A* est un ensemble d'arcs tels que :

 \forall $(c, z) \in C \times Z$, $a = (c, z) \in A \Leftrightarrow$ la variable z apparaît dans la contrainte c

- Définition 2.
 - On appelle structure d'une contrainte c le sous-ensemble des variables Z(c) telles que : $\forall z \in Z(c)$, $(c, z) \in A$
- Définition 3.
 - On appelle sous-système tout couple $(\Phi, Z(\Phi))$ où Φ est un sous ensemble de C et $Z(\Phi) = \bigcup c \in \Phi Z(c)$.

Exemple

Un sous-système est une paire $(\Phi, Z(\Phi))$ où Φ est un sous-ensemble de C et $Z(\Phi) = \bigcup_{C} c \in \Phi$.

C/Z	u_R	u_L	u_C	i	z_1	z_2	u_m	u_e
C ₁	1	0	0	1	0	0	0	0
C ₂	0	1	0	1	0	0	0	0
C ₃	0	0	1	1	0	0	0	0
C ₄	0	0	1	0	0	0	1	0
C ₅	1	1	1	0	0	0	0	1
C ₆	0	0	0	1	1	0	0	0
C ₇	0	0	1	0	0	1	0	0

Sous-système (R,L)

C/Z	u_R	u_L	i
C ₁	1	0	1
C ₂	0	1	1

Equations Différentielle et algébrique

- Trois sortes d'équations sont utilisées :
 - Différentielle
 - Algébrique
 - Mesure

$$\begin{cases} \dot{x}_d(t) = F(x_a, x_d, u) \\ y = g(x_a, x_d, u) \\ 0 = h(x_a, x_d, u) \end{cases}$$

$$\dot{x}_i(t) = z_i = \frac{d}{dt}x_i(t)$$

$$C = \left\{ \frac{d}{dt} \right\} \cup \left\{ g \right\} \cup \left\{ h \right\} \cup \left\{ F \right\}$$

 $\left\{\frac{d}{dt}\right\}$: contrainte différentielle

Les variables utilisées sont

$$Z = \{x_a\} \cup \{x_d\} \cup \{\dot{x}_d\} \cup u \cup y$$

Exemple

Réservoir

$$\mathbf{c_1}$$
: $dx(t)/dt - q_i(t) + q_o(t) = 0$

Vanne d'entrée

$$\mathbf{c_2}$$
: $q_i(t) - au(t) = 0$ U(t)

Tuyau de sortie

$$\mathbf{c_3}$$
: $q_0(t) - k_v(x(t)) =$

Capteur de niveau1

$$\mathbf{c_4} : y_1(t) - x(t) = 0$$

Capteur de niveau2

$$\mathbf{c_5}$$
: $y_2(t) - x(t) = 0$

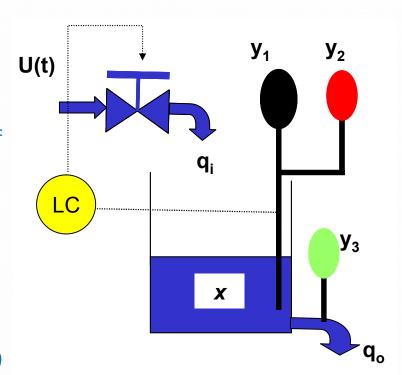
Capteur de débit

$$\mathbf{c_6}$$
: $y_3(t) - q_o(t) = 0$

Algorithme de Controle

$$\mathbf{c_7}$$
: $u(t) = 1$ if $lmin \ge y_1(t) \ge lmax$
 $u(t) = 0$ else

Contrainte Differentielle c_8 : z = dx/dt



matrice d'Incidence et graphe biparti

$$c_1$$
: $dx(t)/dt - q_i(t) - q_o(t) = 0$

$$c_2$$
: $q_i(t) - au(t) = 0$

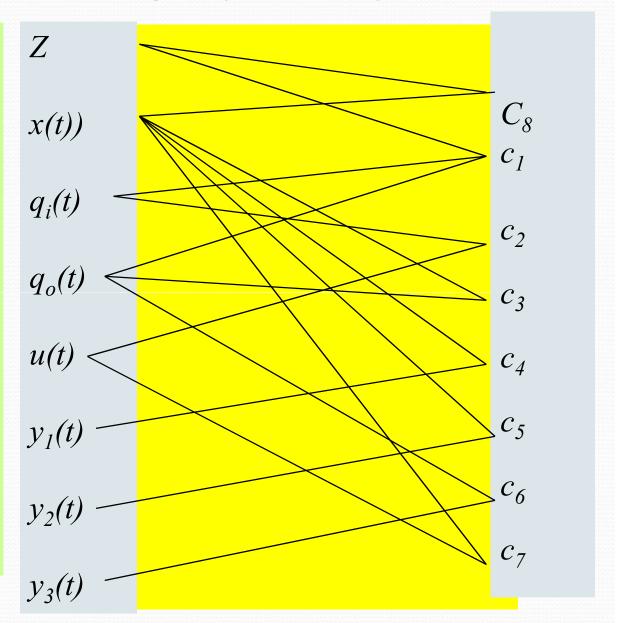
$$c_3$$
: $q_0(t) - k_v(x(t)) = 0$

$$c_4$$
: $y_1(t) - x(t) = 0$

$$c_5$$
: $y_2(t) - x(t) = 0$

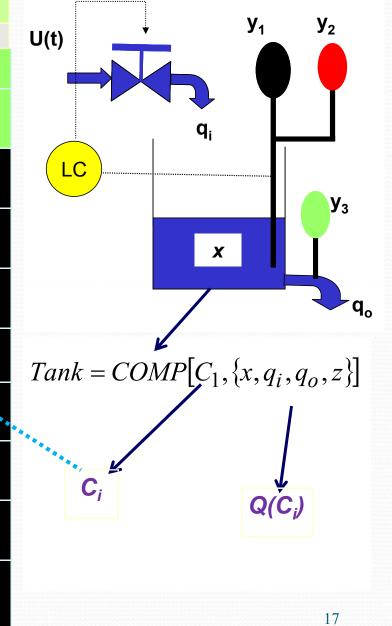
$$c_6$$
: $y_3(t) - q_o(t) = 0$

$$c_7$$
: $u(t) = 1$ if $lmin \ge x(t) \ge lmax$
 $u(t) = 0$ else



<u>Exemple</u>: Un sous système: c'est un couple $(C_{i,},Q(C_{i})$ dans lequel $Q(C_{i})$ est l'ensemble des variables contraintes par Ci.

		$Q_X(C_i)$					$Q_{C}(C_{i})$			
		$Q(C_i)$				·)				
		variat	oles in	connu	ues	Vari	ables	connue	es	
Fi(i=	=1-8)	X	q _i	q _o	Z=x'	u	y ₁	y ₂	y ₃	
C ₁	Tank	1	1	1	1	0	0	0	0	
C ₂	Valve	0	1	0	·O.	1	0	0	0	
C ₃	Pipe	1	0	1	0	0.	0	0	0	
C ₄	LI1	1	0	0	0	0	1	.0	0	
C ₅	LI2	1	0	0	0	0	0	1	****	
C ₆	FI	0	0	1	0	0	0	0	1	
C7	LC	0	0	0	0	1	1	0	0	
C8	Dif. Cons.	1	0	0	1	0	0	0	0	



Caractérisation des systèmes

Caractérisation

- La condition d'existence d'une RRA est liée à la caractérisation des sous systèmes
- Un sous système :
 - Il est associé à l'ensemble des contraintes C_i qu'il fait intervenir :
 - c'est un couple $(C_i, Q(C_i))$ dans lequel $Q(C_i)$ est l'ensemble des variables contraintes par C_i
- Q(C_i) est décomposé en deux parties
 - Qc(C_i): correspond aux variables connues
 - Qx(C_i): correspond aux variables inconnues

TYPES DE SOUS SYSTEMES

- Les contraintes décrivant le comportement du sous système
 - Décrites par la relation : $F_i(Qc(C_i),Qx(C_i))=o$
- TYPES DE SOUS SYSTEMES
 - Le nbre de solutions pour $Qx(C_i)$ qui peuvent être obtenues à partir de $Q(C_i)$ caractérise chaque sous système . On distingue :
 - Un système sous déterminé
 - Juste déterminé
 - Sur déterminé

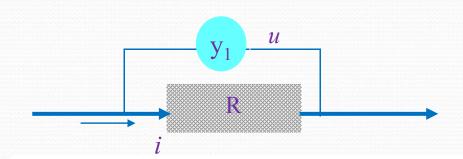
Système sous-déterminé?

- (C, Q(C)) est sous-déterminé si,
 - pour toute valeur de Q(C), l'ensemble des valeurs de Qx(C) vérifiant les contraintes C est de cardinal supérieur à la cardinalité des contraintes. : card(Q(C))<card(Qx(C))
 - Causes:
 - Il n y a pas assez d'équations pour déterminer x
 - La non unicité des solutions : les variables Qx(C) ne peuvent pas être calculées à partir des valeurs connues des variables Qc(C) et des contraintes C.
 - Conséquence d'une modélisation insuffisante du système, ou de la non observabilité de certaines variables.

Système juste déterminé et système surdéterminé

- (C, Q(C)) est juste déterminé si :
 - card(C)=card(Qx(C))
 - Les variables inconnues Qx(C) peuvent être calculées de façon unique à partir des variables connues Qc(C) et des contraintes C.
- (C, Q(C)) est surdéterminé si :
 - card(C)>card(Qx(C))
 - Causes
 - Les variables Qx(C) peuvent être calculées de différentes façons à partir des variables connues Qc(C) et des contraintes C
 - chaque sous-ensemble $C_i \subset C$ fournit un moyen différent de calculer Qx(C).
 - Puisque les résultats de ces différents calculs doivent être identiques (il s'agit des mêmes variables physiques), l'écriture des relations d'égalité constitue l'ensemble des relations de redondance analytique cherché

Example (1/2)



 $Z=\{X\}\ U\ \{K\}$

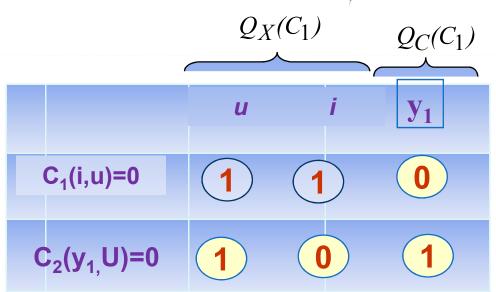
 $X=\{u, i\}, K=\{y_{1,i}\}$

C1: u-Ri=0

C2: y_1 -u=0

Sous-système : $C_1(i,u)=0$

 $Q(C_1) = Q_X(C_1) \cup Q_C(C_1)$



 $(C_1, Q(C_1))$ est sous-déterminé si, pour toute valeur de $Q_C(C_1)$, l'ensemble des valeurs de $Q_X(C_1)$ vérifiant les contraintes C_1 est de cardinal supérieur à un.

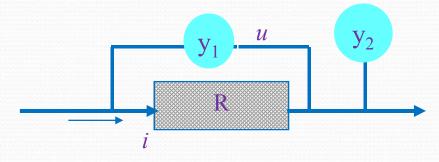
 $(C_1, Q(C_1))$ est sous-déterminé

 $Card(C_1)=1 < Card(Q_x(C_1)=2)$

 $(C_2, Q(C_2))$ est juste déterminé : $Card(C_2)=1=Card(Q_x(C_2))$

(C, Q(C)) est juste déterminé: $Card(C)=2=Card(Q_x(C)=2)$

Exemple (2/2)



Z=XUK

 $X=\{u, i\}, K=\{y_1, y_2,\}$

C1: U-Ri=0

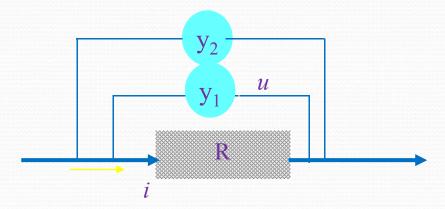
C2: y1-u=0

C3: y2-i=0

	u	i	\mathbf{y}_1	\mathbf{y}_2
C ₁ (i, u)=0	1	1	0	0
$C_2(y_{1,u})=0$	1	0	1	0
$C_3(i_y_2)=0$	0	1	0	1

(C, Q(C)) est sur déterminé: Card(C)=3>Card(Q_x (C)=2

Exemple: matrice d'Incidence



x={u, i} K={} C₁: U-Ri=0 $x=\{u, i\}$ $K=\{y_1\}$ C_1 : U-Ri=0 C_2 : y_1 -U=0

 $x=\{u, i\}$ $K=\{y_1, y_2, \}$ C_1 : U-Ri=0 C_2 : y_1 –U=0 C_3 : y_2 -U=0

C/Z	u	i	\mathbf{y}_1	\mathbf{y}_2
C ₁ (i,u)=0	1	1	0	0
$C_2(y_{1,}u)=0$	1	0	1	0
$C_3(u_y_2)=0$	1	0	0	1

Décomposition Canonique

 N'importe quel système peut être décomposé d'une façon unique en:

- Sur-contraintes
- Juste-contraintes

Sous-contraintes

sous-systems

Seulement le sous-système sur-contraintes est surveillable

Redondance: exemple introductif

C/Z	<i>y</i> ₁	y ₂	X	X - $\{x\}$	$f_1(y_1, x) = 0$
f ₁	1	0	1	0	$f_2(y_2, x) = 0$
f ₂	0	1	1	0	

- Le sous-système $\{f_1, f_2\}$ surdétermine la variable inconnue x
- x peut être calculée de deux manières différentes (si f₁ et f₂ sont inversibles par rapport à x)
- les deux résultats devraient être identiques

Redondance: exemple introductif

(1) Modèle du système:
$$f_1(y_1, x) = 0$$
$$f_2(y_2, x) = 0$$

(2) Calcul de x

$$x = f_1^{-1}(y_1)$$

 $x = f_2^{-1}(y_2)$

(3) Condition de cohérence(RRA)

$$f_1^{-1}(y_1) - f_2^{-1}(y_2) = 0 => r = f_1^{-1}(y_1) - f_2^{-1}(y_2)$$

Propriétés Structurelles

Analyse Structurelle

- Les systèmes qui ont le même modèle structurel sont structurellement équivalents
- Propriétés structurelles?
 - Ce sont des propriétés de la structure du système, elles sont partagés par tous les systèmes structurellement équivalents
 - Exemple :
 - les systèmes qui ne diffèrent que par la valeur de leurs paramètres ⇒
 les propriétés structurelles sont indépendantes des valeurs des paramètres
 du système (ce qui est vrai presque partout dans l'espace paramétrique du
 système).

Les propriétés structurelles sont des propriétés du Graphe structurel

Sous-système observable Sous-système contrôlable Sous-système surveillable Sous-système reconfigurable etc.

Exemple

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a(\Theta) & b(\Theta) \\ c(\Theta) & d(\Theta) \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

Matrice est inversible $a(\Theta)d(\Theta) - b(\Theta)c(\Theta) = 0$

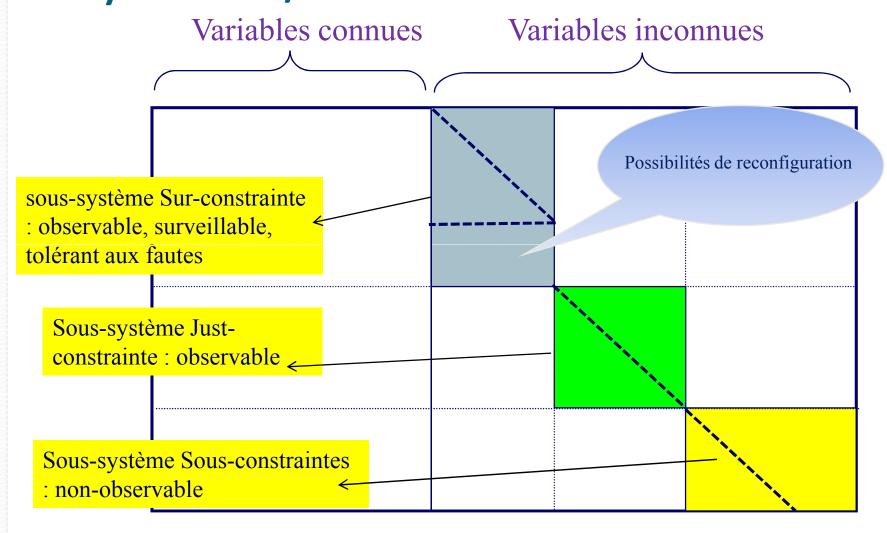
Condition Structurelle : pas de ligne nulle (colonne)

Nécessaire mais pas suffisante

Conclusions

- Les propriétés réelles ne sont potentielles que lorsque les propriétés structurelles sont satisfaites.
- Elles ne peuvent certainement pas être vraies lorsque les propriétés structurelles ne sont pas satisfaites.
- Les propriétés structurelles sont des propriétés qui s'appliquent presque partout aux systèmes actuels dans l'espace de leurs paramètres indépendants.

Décomposition Canonique & Analyse FDI / FTC



Conclusions (1/3)

- L'analyse structurelle basée sur les graphes bipartis est facile à comprendre, facile à appliquer,
- Elle montre la relation entre les contraintes et les composants,
- Elle permet de :
- identifier la partie contrôlable du système, c'est-à-dire le sous-ensemble des composants du système dont les défauts peuvent être détectés et isolés,

Conclusions (2/3)

- Avantages
 - Facile à mettre en œuvre et adapté aux systèmes complexes
 - Permet de déterminer les possibilités FDI / FTC
 - Aucune connaissance préalable des équations du modèle n'est nécessaire
- Inconvénients
 - L'analyse structurelle ne produit que des propriétés structurelles

Conclusions (3/3): Qu'est qu'on peut faire avec l'analyse structurelle?

- le système peut-il être observé?
 - toutes les variables système peuvent-elles être calculées à partir de la connaissance des sorties des capteurs
 - le système peut-il être contrôlé?
- le système peut-il être surveillé?
 - le dysfonctionnement des composants du système peut-il être détecté et isolé?
- Le système peut-il être reconfiguré?
 - le système peut-il atteindre un objectif en dépit du dysfonctionnement de certains composants