Faculté des Sciences

Dept. Mathématiques

Prof. M. Benalili

m benalili@yahoo.fr

Module de géométrie différentielle

3ième année de Mathématiques

Série d'exercices " Espaces tangents "

Exercice1

Parmi les sous-ensembles suivants, lesquels sont des surfaces de R^3 et déterminer leur espace tangent en chaque point:

$$\{(x,y,z) \in R^3 : x^2 + y^2 + z^2 - 3xyz = 1\},$$

$$T^2 = \{(x,y,z) \in R^3 : \left(\sqrt{x^2 + y^2} - 2\right)^2 + z^2 = 1, \}$$

$$H_c = \{(x,y,z) \in R^3 : x^2 + y^2 - z^2 = c\}$$

Exercice2

Soit $f: M_n(R) \to R$ de classe C^{∞} définie par f(A) = det(A).

1) Montrer que

$$\lim_{\lambda \to 0} \frac{\det(id_n + \lambda X) - 1}{\lambda} = trace(X)$$

(penser au polynôme caractéristique). En déduire $D_{id_n}f(X)$.

- 2) En remarquant que $\frac{det(A+\lambda X)-det(A)}{\lambda}$ est égal à det(A) $\frac{det(id_n+\lambda A^{-1}X)-1}{\lambda}$ pour A inversible, calculer $D_A f(X)$ lorsque Aest inversible.
- 3) Montrer que $Sl_n(R) = \{M \in M_n(R) : \det(M) = 1\}$ est une sous-variété de $M_n(R)$, de dimension $n^2 1$, dont l'espace tangent en id_n est $\{X \in M_n(R) : trace(X) = 0\}$. Exercice3

Montrer que $Sl_n(R) = \{M \in M_n(R) : \det(M) = 1\}$ est une

hypesurface de classe C^{∞} de $M_n(R)$. Montrer que l'espace tangent à $Sl_n(R)$ en A est

 $T_A Sl_n(R) = \{ M \in M_n(R) : \det(A^{-1}M) = 0 \}.$