Fonction de Green - Équations de Laplace et de Poisson

1. Introduction et rappels

Nous avons établi la solution fondamentale ϕ de l'équation de *Laplace* dans \mathbb{R}^n $\Delta u = 0$.

La solution ϕ est donnée par, rappelons-le,

$$\phi(x) = \begin{cases} -\frac{1}{2\pi} \ln|x| & \text{si } n = 2\\ \frac{1}{(n-2)\omega_n |x|^{n-2}} & \text{si } n \ge 3, \end{cases}$$

où $ω_n$ est la mesure (surface) de la sphère unité $S^{n-1} = \partial B(0,1)$ de \mathbb{R}^n

$$\omega_n = n\alpha_n = \frac{2\sqrt{\pi^n}}{\Gamma\left(\frac{n}{2}\right)}$$

et α_n est la mesure (volume) de la boule unité B(0,1) de \mathbb{R}^n .

La fonction ϕ est évidemment définie et harmonique dans $\mathbb{R}^n \setminus \{0\}$.

Concernant l'équation de Poisson

$$-\Delta u = f \qquad (*)$$

nous avons le résultat suivant.

Théorème: Soit $f \in C_c^2(\mathbb{R}^n)$, alors la fonction u définie par

$$u(x) = \int_{\mathbb{R}^n} \phi(x - y) f(y) dy$$

est de classe C^2 dans \mathbb{R}^n et résout l'équation (*) dans \mathbb{R}^n .

Rappelons aussi les formules de la moyenne.

Théorème: Soit Ω un ouvert de \mathbb{R}^n et $u \in C^2(\Omega)$. Si u est harmonique dans Ω alors pour toute boule B(x, r), r > 0 telle que $\overline{B(x, r)} \subset \Omega$, on a

$$u(x) = \frac{1}{\alpha_n r^n} \int_{B(x,r)} u(y) dy = \frac{1}{\omega_n r^{n-1}} \int_{\partial B(x,r)} u(y) dS_y.$$

a_bensedik@mail.univ-tlemcen.dz

Terminons ces rappels par les formules de Green.

Soit $\Omega \subset \mathbb{R}^n$ est un ouvert borné de frontière $\partial\Omega$ de classe C^1 , alors en tout point $x \in \partial\Omega$ est définie la normale unitaire η dirigée vers l'extérieur de Ω ,

$$\eta(x) = \eta = (\eta_1, \eta_2, ... \eta_n) \in \mathbb{R}^n.$$

Soit $u \in C^1(\overline{\Omega})$, la dérivée de u par rapport à la normale extérieure η est définie par

$$\frac{\partial u}{\partial \eta} = \eta. \, \forall u = \sum_{i=1}^{n} \eta_i \frac{\partial u}{\partial x_i} = \sum_{i=1}^{n} \eta_i u_{x_i}$$

et nous avons

$$\int_{\Omega} \frac{\partial u}{\partial x_i} dx = \int_{\partial \Omega} \eta_i u \, dS. \tag{G}$$

Si $u, v \in C^1(\overline{\Omega})$ alors par application de cette relation à la fonction uv nous obtenons la formule d'intégration par parties

$$\int_{\Omega} v \frac{\partial u}{\partial x_i} dx = \int_{\partial \Omega} \eta_i u v \ dS - \int_{\Omega} u \frac{\partial v}{\partial x_i} dx.$$

De la formule (G), dite formule de Gauss-Green, nous déduisons le théorème de la divergence.

Théorème: Soit $w = (w_1, w_2, ... w_n)$ un champ de vecteurs tel que $w_i \in C^1(\overline{\Omega})$, i = 1, ..., n. Alors

$$\int_{\Omega} \operatorname{div} w \, dx = \int_{\partial \Omega} w \cdot \eta \, dS.$$

Nous arrivons maintenant aux formules de Green.

Théorème (formules de Green): Soit $u, v \in C^2(\overline{\Omega})$. Alors

$$\int_{\Omega} \Delta u \, dx = \int_{\partial \Omega} \eta . \, \nabla u \, dS = \int_{\partial \Omega} \frac{\partial u}{\partial \eta} \, dS \tag{1}$$

$$\int_{\Omega} u \Delta v \, dx = \int_{\partial \Omega} u \frac{\partial v}{\partial \eta} \, dS - \int_{\Omega} \nabla u \cdot \nabla v \, dx \qquad (2)$$

$$\int_{\Omega} (u\Delta v - v\Delta u) dx = \int_{\partial\Omega} \left(u \frac{\partial v}{\partial \eta} - v \frac{\partial u}{\partial \eta} \right) dS \quad (3)$$

a bensedik@mail.univ-tlemcen.dz

2. Représentation intégrale des fonctions régulières

Nous avons vu que si f est une fonction au moins continue à support compact, alors la fonction u définie par

$$u(x) = \int_{\mathbb{R}^n} \phi(x - y) f(y) dy$$

est une solution de l'équation $-\Delta u = f$.

En portant dans l'expression de u nous obtenons

$$u(x) = -\int_{\mathbb{D}^n} \phi(x - y) \Delta u(y) \ dy,$$

pourvu que u soit de classe C^2 sur \mathbb{R}^n et à support compact.

Nous allons généraliser cette formule aux domaines bornés de \mathbb{R}^n .

Théorème 1: Soit Ω un domaine borné régulier de \mathbb{R}^n $(n \ge 2)$ et $u \in C^2(\overline{\Omega})$. Alors pour tout $x \in \Omega$,

$$u(x) = -\int_{\Omega} \phi(x - y) \Delta u(y) \ y + \int_{\partial \Omega} \left(\phi(x - y) \frac{\partial u(y)}{\partial \eta} - u(y) \frac{\partial \phi(x - y)}{\partial \eta(y)} \right) dS_{y}.$$
 (RI)

Preuve: Soit $x \in \Omega$, la fonction $y \mapsto \phi(x - y)$ explose en y = x, fixons alors un réel ε tel que $0 < \varepsilon < \operatorname{dist}(x, \partial\Omega)$, et appliquons la troisième formule de Green dans l'ouvert $\Omega_{\varepsilon} = \Omega \setminus \overline{B}(x, \varepsilon)$, nous obtenons, puisque $\phi(x - y)$ est harmonique dans Ω_{ε}

$$\int_{\Omega_{\varepsilon}} \phi(x-y) \Delta u(y) \, dy = \int_{\partial \Omega_{\varepsilon}} \left(\phi(x-y) \frac{\partial u(y)}{\partial \eta} - u(y) \frac{\partial \phi(x-y)}{\partial \eta(y)} \right) dS_{y}.$$

Comme $\partial \Omega_{\varepsilon} = \partial \Omega \cup \partial B(x, \varepsilon)$, alors

$$\int_{\Omega_{\varepsilon}} \phi(x - y) \Delta u(y) \, dy = \int_{\partial \Omega} \left(\phi(x - y) \frac{\partial u(y)}{\partial \eta} - u(y) \frac{\partial \phi(x - y)}{\partial \eta(y)} \right) dS_{y}$$

$$+ \int_{\partial B(x, \varepsilon)} \left(\phi(x - y) \frac{\partial u(y)}{\partial \eta} - u(y) \frac{\partial \phi(x - y)}{\partial \eta(y)} \right) dS_{y}$$
(4)

a_bensedik@mail.univ-tlemcen.dz

Quand ε tend vers 0,

$$\int_{\Omega_{\varepsilon}} \phi(x-y) \Delta u(y) \ dy \longrightarrow \int_{\Omega} \phi(x-y) \Delta u(y) \ dy.$$

Traitons le deuxième terme du deuxième membre de (4).

Nous avons en notant $\partial B(x, \varepsilon) = [|y - x| = \varepsilon]$

$$\int_{[|y-x|=\varepsilon]} \phi(x-y) \frac{\partial u(y)}{\partial \eta} \ dS_y = \phi(\varepsilon) \int_{[|y-x|=\varepsilon]} \frac{\partial u(y)}{\partial \eta} \ dS_y$$

car ϕ est radiale donc $\phi(x - y) = \phi(|x - y|) = \phi(\varepsilon)$.

D'autre part d'après la première formule de Green

$$\left| \int_{[|y-x|=\varepsilon]} \frac{\partial u(y)}{\partial \eta} \ dS_y \right| = \left| \int_{[|y-x|<\varepsilon]} \Delta u \ dy \right| \le \sup_{B(x,\varepsilon)} |\Delta u| \int_{B(x,\varepsilon)} dy \le \alpha_n \varepsilon^n \max_{\overline{\Omega}} |\Delta u|.$$

Ainsi

$$\left| \int_{[|y-x|=\varepsilon]} \phi(x-y) \frac{\partial u(y)}{\partial \eta} \ dS_y \right| \le \alpha_n |\phi(\varepsilon)| |\varepsilon^n \max_{\overline{\Omega}} |\Delta u| \underset{\varepsilon \to 0}{\longrightarrow} 0$$

 $\operatorname{car} |\phi(\varepsilon)| \leq C_n \left(\varepsilon^{2-n} + \ln \varepsilon\right) \operatorname{et} \max_{\overline{\Omega}} |\Delta u| \text{ existe et est fini puisque } u \in C^2(\overline{\Omega}).$

Passons au terme

$$\int_{\partial B(x,\varepsilon)} u(y) \frac{\partial \phi(x-y)}{\partial \eta(y)} dS_y = \int_{[|y-x|=\varepsilon]} u(y) \frac{\partial \phi(x-y)}{\partial \eta(y)} dS_y.$$

Nous avons pour $y \in \partial B(x, \varepsilon)$

$$\frac{\partial \phi(x-y)}{\partial \eta(y)} = -\frac{\partial \phi(\varepsilon)}{\partial \varepsilon} = \frac{\varepsilon^{1-n}}{\omega_n} , n \ge 2.$$

D'où

$$\int_{\partial B(x,\varepsilon)} u(y) \frac{\partial \phi(x-y)}{\partial \eta(y)} dS_y = \frac{\varepsilon^{1-n}}{\omega_n} \int_{[|y-x|=\varepsilon]} u(y) dS_y = M(u; x, \varepsilon)$$

où $M(u; x, \varepsilon)$ est la moyenne de la fonction u sur la sphère de centre x et de rayon ε

$$M(u; x, \varepsilon) = \frac{1}{\omega_n \varepsilon^{n-1}} \int_{[|y-x|=\varepsilon|} u(y) \, dS_y$$

comme $M(u; x, \varepsilon) \to u(x)$, quand $\varepsilon \to 0$, nous déduisons en passant à la limite dans (4) que

$$\int_{\Omega} \phi(x - y) \Delta u(y) \, dy = \int_{\partial \Omega} \left(\phi(x - y) \frac{\partial u(y)}{\partial \eta} - u(y) \frac{\partial \phi(x - y)}{\partial \eta(y)} \right) dS_y - u(x)$$

et finalement

$$u(x) = -\int_{\Omega} \phi(x - y) \Delta u(y) \, dy + \int_{\partial \Omega} \left(\phi(x - y) \frac{\partial u(y)}{\partial \eta} - u(y) \frac{\partial \phi(x - y)}{\partial \eta(y)} \right) dS_{y}.$$

C'est la formule (*RI*).

Remarque: La formule précédente reste valable pour $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$.

Exercice 1:

1. Démontrer que pour $y \in \partial B(x, \varepsilon) \subset \overline{B}(x, \varepsilon) \subset \Omega$ on a

$$\frac{\partial \phi(x-y)}{\partial \eta(y)} = \frac{\varepsilon^{1-n}}{\omega_n}, \quad n \ge 2.$$

 $\eta(y)$ désigne la normale unitaire extérieure en $y \in \partial \Omega_{\varepsilon}$ avec $\Omega_{\varepsilon} = \Omega \backslash \overline{B}(x, \varepsilon)$.

2. Soit u une fonction intégrable sur Ω . Montrer que pour toute boule $B(x,\varepsilon)$, $\varepsilon>0$ telle que $\bar{B}(x,\varepsilon)\subset\Omega$ on a

$$\frac{1}{\alpha_n \varepsilon^n} \int_{B(x,\varepsilon)} u(y) \, dy \to u(x) \text{ quand } \varepsilon \to 0$$

$$\frac{1}{\omega_n \varepsilon^{n-1}} \int_{\partial B(x,\varepsilon)} u(y) \, dS_y \longrightarrow u(x) \text{ quand } \varepsilon \longrightarrow 0.$$

Exercice 2:

En adaptant la preuve du théorème, démontrer la formule (RI) pour $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$.

Application: Voyons maintenant un des intérêts de la formule (*RI*).

Soit Ω un domaine borné régulier de \mathbb{R}^n . Considérons le problème suivant.

$$\begin{cases} -\Delta u = f & \text{dans } \Omega \\ u = g & \text{sur } \partial \Omega \\ \frac{\partial u}{\partial \eta} = h & \text{sur } \partial \Omega, \end{cases}$$

où les fonctions f, g et h sont continues, chacune sur son domaine.

En utilisant la formule (RI) nous obtenons directement la solution u, à savoir,

$$u(x) = \int_{\Omega} \phi(x - y) f(y) \, dy + \int_{\partial \Omega} \left(\phi(x - y) h(y) - g(y) \frac{\partial \phi(x - y)}{\partial \eta(y)} \right) dS_y, \ \forall x \in \Omega.$$

Une conséquence immédiate du Théorème 1, est le corollaire suivant.

Corollaire: Soit Ω un domaine borné régulier de \mathbb{R}^n et $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ une fonction harmonique. Alors pour tout $x \in \Omega$,

$$u(x) = \int_{\partial\Omega} \left(\phi(x - y) \frac{\partial u(y)}{\partial \eta} - u(y) \frac{\partial \phi(x - y)}{\partial \eta(y)} \right) dS_y.$$

3. Fonction de Green et équation de Poisson

Soit Ω un domaine borné régulier. Considérons l'équation de Poisson avec condition de Dirichlet.

$$(\mathcal{P})$$
 $-\Delta u = f$ dans Ω; $u = g \operatorname{sur} \partial \Omega$

où *f* et *g* sont des fonctions continues.

En essayant d'appliquer la formule (RI), on se heurte à un petit problème; la valeur de $\partial u/\partial \eta$ sur $\partial \Omega$ est inconnue.

Nous allons donc modifier la formule (RI) de sorte qu'elle ne contienne plus le terme $\partial u/\partial \eta$. Pour se faire, soit H une fonction harmonique dans Ω . En utilisant la troisième formule de Green nous obtenons, du fait que $\Delta H=0$ dans Ω ,

$$\int_{\Omega} H\Delta u \, dy = \int_{\partial \Omega} \left(H \frac{\partial u}{\partial \eta} - u \frac{\partial H}{\partial \eta} \right) dS$$

ďoù

$$0 = \int_{\Omega} H(y)\Delta u(y) \, dy - \int_{\partial \Omega} \left(H(y) \frac{\partial u(y)}{\partial \eta} - u(y) \frac{\partial H(y)}{\partial \eta} \right) dS. \tag{5}$$

En ajoutant, membre à membre, (RI) et (5) nous avons

$$u(x) = -\int_{\Omega} \left(\phi(x - y) - H(y) \right) \Delta u(y) \, dy$$
$$+ \int_{\partial \Omega} \left(\left(\phi(x - y) - H(y) \right) \frac{\partial u(y)}{\partial \eta} - u(y) \frac{\partial \left(\phi(x - y) - H(y) \right)}{\partial \eta(y)} \right) dS_y.$$

Choisissons maintenant parmi les fonctions harmoniques H dans Ω celle qui vérifie la condition, $H(y) = \phi(x - y), \forall y \in \partial \Omega$.

Pour cette fonction $H, x \in \Omega$ représente un paramètre, notons-la par H_x .

En remplaçant dans l'expression de u(x), nous obtenons que pour tout $x \in \Omega$

$$u(x) = -\int_{\Omega} \left(\phi(x - y) - H_x(y) \right) \Delta u(y) \, dy - \int_{\partial \Omega} u(y) \frac{\partial \left(\phi(x - y) - H_x(y) \right)}{\partial \eta(y)} dS_y.$$

Définition: On appelle fonction de Green pour le domaine Ω , la fonction G définie par

$$G(x,y) = \phi(x-y) - H_x(y); \ x, y \in \Omega, x \neq y.$$

Ceci étant, la fonction $u \in C^2(\overline{\Omega})$ s'exprime en terme de la fonction de Green

$$u(x) = -\int_{\Omega} G(x, y) \Delta u(y) \, dy - \int_{\partial \Omega} u(y) \frac{\partial G(x, y)}{\partial \eta(y)} dS_{y}.$$

Remarquons que le terme $\partial u/\partial \eta$ n'apparait plus dans cette nouvelle formule.

Pour le problème de Poisson (\mathcal{P}) , la solution est donnée par

$$u(x) = \int_{\Omega} G(x, y) f(y) dy - \int_{\partial \Omega} g(y) \frac{\partial G(x, y)}{\partial \eta(y)} dS_{y}.$$

Pour le problème de Laplace avec condition de Dirichlet, nous obtenons

$$u(x) = -\int_{\partial \Omega} u(y) \frac{\partial G(x, y)}{\partial \eta(y)} dS_y = -\int_{\partial \Omega} g(y) \frac{\partial G(x, y)}{\partial \eta(y)} dS_y$$

et la fonction

$$P(x,y) = -\frac{\partial G(x,y)}{\partial \eta(y)}$$

est le noyau de Poisson.

Passons maintenant aux propriétés de la fonction de Green.

Théorème:

1. La fonction de Green pour le domaine Ω est telle que, pour tout $x \in \Omega$ fixé

$$\begin{cases} \Delta G(x, y) = 0 \ y \in \Omega \setminus \{x\}, \\ G(x, y) = 0 \ y \in \partial \Omega. \end{cases}$$

2. La fonction de Green est symétrique,

$$\forall x, y \in \Omega, x \neq y; G(x, y) = G(y, x).$$

Preuve:

La première propriété découle directement de la définition.

Montrons que la fonction de Green est symétrique.

Fixons $x, y \in \Omega$ tels que $x \neq y$, et posons pour tout $z \in \Omega$

$$u(z) = G(x, z), \qquad v(z) = G(y, z).$$

Alors les fonctions u et v sont harmoniques dans $\Omega \setminus \{x\}$ et $\Omega \setminus \{y\}$ respectivement et u = v = 0 sur $\partial \Omega$.

Posons pour $\varepsilon > 0$ assez petit, $\Omega_{\varepsilon} = \Omega \setminus (B(x, \varepsilon) \cup B(y, \varepsilon))$ et appliquons la troisième formule de Green dans Ω_{ε} aux fonctions u et v,

$$\int_{\Omega_{\varepsilon}} (u\Delta v - v\Delta u) dz = \int_{\partial\Omega_{\varepsilon}} \left(u \frac{\partial v}{\partial \eta(z)} - v \frac{\partial u}{\partial \eta(z)} \right) dS_{z}$$

donc

$$\int_{\partial\Omega_c} \left(u \frac{\partial v}{\partial \eta} - v \frac{\partial u}{\partial \eta} \right) dS = 0.$$

Comme $\partial \Omega_{\varepsilon} = \partial \Omega \cup \partial B(x, \varepsilon) \cup \partial B(y, \varepsilon)$ et u = v = 0 sur $\partial \Omega$ alors

$$\int_{\partial B(x,\varepsilon)\cup\partial B(y,\varepsilon)} \left(u \frac{\partial v}{\partial \eta(z)} - v \frac{\partial u}{\partial \eta(z)} \right) dS_z = 0.$$

D'où

$$\int_{\partial B(\mathbf{x},\varepsilon)} \left(u \frac{\partial v}{\partial \eta(z)} - v \frac{\partial u}{\partial \eta(z)} \right) dS_z + \int_{\partial B(\mathbf{y},\varepsilon)} \left(u \frac{\partial v}{\partial \eta(z)} - v \frac{\partial u}{\partial \eta(z)} \right) dS_z = 0$$

ce qui implique que

$$\int_{\partial B(x,\varepsilon)} \left(u \frac{\partial v}{\partial \eta(z)} - v \frac{\partial u}{\partial \eta(z)} \right) dS_z = \int_{\partial B(y,\varepsilon)} \left(v \frac{\partial u}{\partial \eta(z)} - u \frac{\partial v}{\partial \eta(z)} \right) dS_z. \tag{6}$$

Par similarité, traitons uniquement le premier membre. On a

$$\int_{\partial B(x,\varepsilon)} \left(u \frac{\partial v}{\partial \eta(z)} - v \frac{\partial u}{\partial \eta(z)} \right) dS_z = \int_{\partial B(x,\varepsilon)} u \frac{\partial v}{\partial \eta(z)} dS_z - \int_{\partial B(x,\varepsilon)} v \frac{\partial u}{\partial \eta(z)} dS_z.$$

La fonction v est régulière en dehors de $B(y, \varepsilon)$, donc elle l'est sur $B(x, \varepsilon)$ et par suite $\partial v/\partial \eta$ est bornée sur $\partial B(x, \varepsilon)$ d'où

$$\left| \int_{\partial B(x,\varepsilon)} u \frac{\partial v}{\partial \eta(z)} dS_z \right| \leq C \sup_{\partial B(x,\varepsilon)} |u| \int_{\partial B(x,\varepsilon)} dS_z = C \omega_n \varepsilon^{n-1} \sup_{\partial B(x,\varepsilon)} |u| \xrightarrow[\varepsilon \to 0]{} 0.$$

Pour le deuxième terme, on a

$$\int_{\partial B(x,\varepsilon)} v(z) \frac{\partial u(z)}{\partial \eta(z)} dS_z = \int_{\partial B(x,\varepsilon)} v(z) \frac{\partial G(x,z)}{\partial \eta(z)} dS_z$$

or

$$\frac{\partial G(x,z)}{\partial \eta(z)} = \frac{\partial \left(\phi(x-z) - H_x(z)\right)}{\partial \eta(z)} = \frac{\partial \phi(x-z)}{\partial \eta(z)} - \frac{\partial H_x(z)}{\partial \eta(z)}.$$

D'où

$$\int_{\partial B(x,\varepsilon)} v(z) \frac{\partial u(z)}{\partial \eta(z)} dS_z = \int_{\partial B(x,\varepsilon)} v(z) \frac{\partial \phi(x-z)}{\partial \eta(z)} dS_z - \int_{\partial B(x,\varepsilon)} v(z) \frac{\partial H_x(z)}{\partial \eta(z)} dS_z.$$

Sachant que H_x est régulière dans Ω , alors

$$\left| \int_{\partial B(x,\varepsilon)} v(z) \frac{\partial H_x(z)}{\partial \eta(z)} dS_z \right| \le C_1 \omega_n \, \varepsilon^{n-1} \longrightarrow 0 \, \text{ quand } \varepsilon \longrightarrow 0.$$

Pour le terme en ϕ

$$\int_{\partial B(x,\varepsilon)} v(z) \frac{\partial \phi(x-z)}{\partial \eta(z)} dS_z = -\int_{\partial B(x,\varepsilon)} v(z) \frac{\partial \phi(\varepsilon)}{\partial \varepsilon} dS_z = \frac{1}{\omega_n \varepsilon^{n-1}} \int_{\partial B(x,\varepsilon)} v(z) dS_z$$

donc

$$\int_{\partial B(x,\varepsilon)} v(z) \frac{\partial \phi(x-z)}{\partial \eta(z)} dS_z \longrightarrow v(x) \text{ quand } \varepsilon \longrightarrow 0.$$

Finalement

$$\int_{\partial B(x,\varepsilon)} \left(u \frac{\partial v}{\partial \eta(z)} - v \frac{\partial u}{\partial \eta(z)} \right) dS_z \longrightarrow v(x) \text{ quand } \varepsilon \longrightarrow 0.$$

De la même manière nous obtenons

$$\int_{\partial B(y,\varepsilon)} \left(v \frac{\partial u}{\partial \eta(z)} - u \frac{\partial v}{\partial \eta(z)} \right) dS_z \longrightarrow u(y) \text{ quand } \varepsilon \longrightarrow 0.$$

En faisant tendre ε vers 0 dans (6), nous arrivons à v(x) = u(y), et en revenant aux expressions de u et v nous obtenons G(y,x) = G(x,y).

4. Construction de la fonction de Green

L'expression explicite de la fonction de Green, pour des domaines Ω de forme générale, n'est pas facile à établir, puisque sa construction consiste à déterminer la fonction H_x , où x parcourt Ω et telle que $\Delta H_x(y) = 0$, $y \in \Omega$ et $H_x(y) = \phi(x-y)$, $y \in \partial \Omega$; chose qui n'est pas évidente dans le cas où Ω est de forme quelconque, rappelons-nous que ϕ est radiale.

Nous allons nous restreindre à deux cas.

a. Fonction de Green pour le demi-espace:

Soit $\Omega = \mathbb{R}^n_+ = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n; x_n > 0 \}$ le demi-espace positif de \mathbb{R}^n $(n \ge 2)$.

Pour $x \in \mathbb{R}^n$ posons $x = (x', x_n)$ où $x' = (x_1, x_2, ..., x_{n-1}) \in \mathbb{R}^{n-1}$.

On a $\partial\Omega = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n; x_n = 0\} = \{(x', 0); x' \in \mathbb{R}^{n-1}\} = \mathbb{R}^{n-1} \times \{0\},$

avec ces notations le point (x', 0) est identifié à $x' \in \mathbb{R}^{n-1}$.

Nous allons appliquer la méthode de réflexion pour construire la fonction de Green pour le demi-espace Ω .

Soit $x = (x_1, \dots, x_{n-1}, x_n) \in \Omega$, le réfléchi de x est le point $x^* = (x_1, \dots, x_{n-1}, -x_n)$.

Le point x^* n'appartient pas à Ω puisque $-x_n < 0$. La projection des points x et x^* sur $\partial \Omega$ est le point x'.

La fonction ϕ étant la solution fondamentale du laplacien, remarquons que $\phi(y-x^*)$ est harmonique par rapport $y \in \Omega$, de plus puisque $|y-x^*| = |y-x|$ pour tout $y \in \partial\Omega$ alors $\phi(y-x^*) = \phi(y-x)$ pour $y \in \partial\Omega$ i.e. $\phi(y'-x^*) = \phi(y'-x)$.

En posant maintenant $H_x(y) = \phi(y - x^*)$ nous écrivons d'après ce que nous avons remarqué que

$$\begin{cases} \Delta H_x(y) = 0 & y \in \Omega \\ H_x(y) = \phi(y - x^*) & y \in \partial \Omega, \end{cases}$$

et la fonction de Green pour le demi-espace \mathbb{R}^n_+ est

$$G(x,y) = \phi(y-x) - H_x(y) = \phi(y-x) - \phi(y-x^*); \quad x,y \in \mathbb{R}^n_+, x \neq y.$$

et puisqu'elle est symétrique, $G(x,y) = \phi(x-y) - \phi(x-y^*)$.

a_bensedik@mail.univ-tlemcen.dz

Exercice 3:

- 1. Déterminer le noyau de Poisson relatif au demi-espace \mathbb{R}^n_+ .
- 2. En déduire la solution du problème

$$\begin{cases} \Delta u = 0 \text{ dans } \mathbb{R}^n_+ \\ u = 1 \text{ sur } \mathbb{R}^{n-1}. \end{cases}$$

b. Fonction de Green pour la boule:

Soit $\Omega = \{y \in \mathbb{R}^n; \ |y| < r\}$ la boule de \mathbb{R}^n de centre 0 et de rayon r. On définit le réfléchi ou le dual de $x \in \Omega \setminus \{0\}$ par rapport à $\partial \Omega$ le point x^* donné par

$$x^* = \frac{r^2}{|x|^2} x.$$

Le dual de 0 est indéterminé mais on écrit par convention $|0^*| = +\infty$.

Nous avons les propriétés suivantes.

1. Si $x \in \Omega$, $x \neq 0$ alors son dual n'appartient pas Ω .

En effet $|x^*| = r(r/|x|) > r$ car r/|x| > 1 donc $x^* \notin \Omega$.

2. $\forall x \in \Omega, \forall y \in \partial \Omega$

$$\frac{|y-x^*|}{|y-x|} = \frac{r}{|x|}.$$

Soit $x \in \Omega$ et $y \in \partial \Omega$. Nous avons

$$|y - x^*|^2 = |y|^2 - 2y \cdot x^* + |x^*|^2 = r^2 - 2\frac{r^2}{|x|^2} \sum_{i=1}^n x_i y_i + \frac{r^4}{|x|^2}, \text{ car } |y| = r$$

donc

$$|y - x^*|^2 = \frac{r^2}{|x|^2} \left(r^2 - 2 \sum_{i=1}^n x_i y_i + |x|^2 \right) = \frac{r^2}{|x|^2} \left(|y|^2 - 2 \sum_{i=1}^n x_i y_i + |x|^2 \right)$$

ďoù

$$|y - x^*|^2 = \frac{r^2}{|x|^2}(|y - x|^2).$$

Ainsi pour $x \in \Omega$ et |y| = r nous avons la deuxième propriété,

$$\frac{|y-x^*|}{|y-x|} = \frac{r}{|x|}.$$

Déduction de la fonction de Green:

Posons pour $x \in \Omega$, $H_x(y) = \phi(y - x)$. Alors si $y \in \partial \Omega$ i.e. |y| = r, d'après la propriété que nous venons de démontrer

$$H_x(y) = \phi(y - x) = \phi(|y - x|) = \phi\left(\frac{|x|}{r}(|y - x^*|)\right).$$

En gardant cette même expression nous remarquons que H_x est harmonique dans Ω puisque pour $y \in \Omega$, $y \neq x^*$. Ceci étant nous avons de ce qui précède

$$\begin{cases} \Delta H_x(y) = \Delta_y \phi\left(\frac{|x|}{r}(|y - x^*|)\right) = 0 & \text{si } y \in B(0, r) \\ H_x(y) = \phi\left(\frac{|x|}{r}(|y - x^*|)\right) = \phi(y - x) & \text{si } y \in \partial B(0, r). \end{cases}$$

Et finalement la fonction de Green relative à la boule B(0,r) est

$$G(x,y) = \phi(y-x) - H_x(y) = \phi(y-x) - \phi\left(\frac{|x|}{r}(|y-x^*|)\right); \quad x,y \in B(0,r), x \neq y.$$

Exercice 4:

Donner en terme de la fonction de Green la solution du problème suivant

$$\begin{cases} \Delta u = 0 \text{ dans } B(0, r) \\ u = g \text{ sur } \partial B(0, r). \end{cases}$$

où est une fonction continue. Écrire l'expression explicite du noyau de Poisson.