Problème d'optimisation sous plusieurs contraintes d'égalités

Exercice 1 Résoudre le problème d'optimisation suivant :

$$\operatorname{opt} f(x, y, z) = z$$

s.c.
$$g_1(x, y, z) = x + y + z - 12 = 0$$

 $g_2(x, y, z) = x^2 + y^2 - z = 0$

Exercice 2 Considérons le problème d'optimisation suivant :

opt
$$f(x, y, z) = x^2 + y^2 + z^2$$

s.c.
$$g_1(x, y, z) = x + 2y + z = 1$$

 $g_2(x, y, z) = 2x - y - 3z = 4$

- La fonction f est-elle convexe? Les contraintes sont-elles affines?
- Résoudre le problème.
- La (les) solution(s) trouvée(s) est (sont)-elle(s) globale(s) ?

Exercice 3

Trouver le point le plus proche au point d'origine dans R^3 et qui appartient aux deux plans 3x + y + z = 5 et x + y + z = 1

Exercice 4

- 1- Optimiser $x + y + z^2$ sous contraintes : $x^2 + y^2 + z^2 = 1$ et y = 0.
- 2- Optimiser yz + xz sous contraintes : $y^2 + z^2 = 1$ et xz = 3.

Exercice 5

- 1- Optimiser $x^2 + y^2 + z^2$ sous contrainte : 2x y + 3z = -28.
- 2- Optimiser 2x + 4y + 4z sous contrainte : $x^2 + y^2 + z^2 = 9$.
- 3- Optimiser $4 x^2 y^2$ sous contrainte : $y x^2 + 1 = 0$.
- 4- Trouver le point, de l'ellipse $x^2 + xy + y^2 = 3$, le plus proche au point d'origine
- 5- Trouver le point, du parabole $y = x^2$, le plus proche au point (2,1).