M1-ELN- NI 872-2019-2020

Préparé par : Mr B.Belarbi

1^{ère} série :

Exercice 1:

- 1) Citez et définir les différentes formes de la maintenance ?
- 2) Quelle est la différence entre entretien et maintenance ?
- 3) Quelle est la différence entre dépannage et réparation ?
- 4) Décrire les différentes opérations de maintenance ?
- 5) Combien y a t il de nivaux de maintenance?

Exercice 3:

- 1) Que désigne **T**, indiquer les sources principales permettant de l'obtenir ?
- 2) Que désigne **MTBF**, donner sa formule ?

Exercice 4:

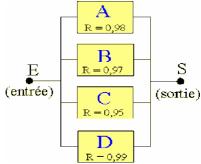
Compléter le tableau suivant par la forme correcte de maintenance à la place des points puis en mettant une croix devant la bonne réponse.

	Mainte	nance	Maintenance 		
Maintenance d'une automobile	•••••	• • • • • •			
				Conditionnelle	
1. Faire le plein d'essence.					
2. Vidanger tous les 10000 Km.					
3. Changer les plaquettes de frein au témoin					
d'usure.					
4. Echanger une roue crevée.					
5. Faire réparer une roue crevée.					
6. Changer la courroie de distribution à					
100000 Km					
7. Vérifier le niveau d'huile tous les mois.					
8. Changer un pot d'échappement.					
9. Changer un cardan.					
10. Changer le train de pneus au début de					
l'hiver et du printemps.					
11. Changer la batterie d'accumulateurs.					
12. Changer les disques de frein.					
13. Changer les bougies.					
14. Changer le filtre à air et le filtre à huile.					

2^{eme} série :

Exercice 1:

- 1) Définir la fiabilité. Quels sont les quatre éléments importants de cette définition ?
- 2) Quels sont les deux principaux indicateurs de la fiabilité ? Les définir ?


Exercice 2 : Un dispositif se compose de quatre composants connectés en série.

Déterminer la fiabilité de l'ensemble ?

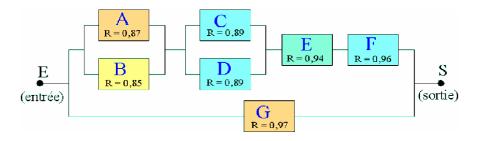
Exercice 3 : Un dispositif se compose de quatre composants connectés en parallèle.

Déterminer la fiabilité de l'ensemble ? Comparer avec l'exercice 2 ?

Exercice 4: Une photocopieuse se compose de 3000 composants connectés en série ayant tous la même fiabilité R=0,9998.

- 1) Calculer la fiabilité de l'ensemble ?
- 2) Refaire le calcul avec un nombre de composants divisé par 2 ?
- 3) Déterminer la fiabilité R' de chaque composant si on souhaite une fiabilité globale de 80% avec les 3000 composants ?

Exercice 5: Un système est formé de quatre composants en série dont les taux de défaillances (supposés constants) pour 1000 heures sont respectivement : 0.05 - 0.06 - 0.045 - 0.048.

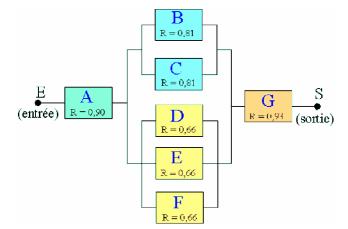

- 1) Quelle est la probabilité pour que le système survie jusqu'à 4000 heures ?
- 2) Calculer la MTBF du système ?
- 3) Refaire le calcul avec quatre composants en parallèle ?

Exercice 6: Un dispositif est formé de cinq composants montés en série dont les MTBF respectives en heures sont : 9540, 15220, 85000, 11200, 2600.

Calculer la probabilité de survie de l'ensemble pour une durée de 1000 heures si λ est supposé constant ?

Exercice 7 : Si λ est supposé constant, quelle est la fiabilité d'un dispositif travaillant pendant une période du temps égale au MTBF ?

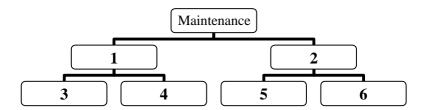
Exercice 8 : Calculer la fiabilité de l'ensemble du dispositif proposé ?


Maintenance Industrielle) - Chapitre 2. TD n° 2

L3-ELT- ES 672-2019-2020

Préparé par : Mr B.Belarbi

Exercice 9:


Calculer la fiabilité du dispositif proposé ?

Série N°3

Exercice 1:

1) Complétez le graphe des différentes formes de la maintenance ?

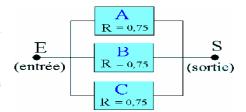
- 2) Définissez : *la Maintenance*, les termes 1 et 2 ?
- 3) Citez six opérations de maintenance ?

Exercice 2:

- 1) Définissez *la Fiabilité* ?
- 2) Quels sont les deux principaux indicateurs de la fiabilité ? les définissez ?
- 3) Enoncez ses formules et donnez ses unités ?

Exercice 3:

Une machine de production, dont la durée totale de fonctionnement est de 1500 heures, se compose de quatre sous-systèmes A, B, C et D montés en série et ayant les taux de défaillances constants et les MTBF respectives notées sur la figure suivante :

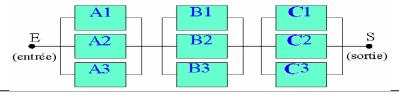


- 1) Déterminez le taux de défaillances de chaque sous-système ?
- 2) En déduire le taux de défaillances et la MTBF globales ?
- 3) Calculez la fiabilité globale R_S de la machine ?

Exercice 4:

Un système est constitué de trois composants A, B et C connectés en parallèle de même fiabilité $R=R_A=R_B=R_C=0.75$.

- 1) Déterminez la fiabilité de l'ensemble ?
- 2) Quel nombre de composants en parallèle faudrait-il mettre pour avoir une fiabilité globale de 99,9% ?
- 3) Quelle devrait être la fiabilité R' de chacun de ces composants Si on souhaite obtenir une fiabilité globale de 99% avec trois composants seulement?



Exercice 5:

Le système suivant est composé de trois dispositifs en parallèle connectés entre eux en série. On donne les fiabilités respectives des composants dans le tableau ci-dessous.

Déterminez la fiabilité globale de système ?

Composant	A1	A2	A3	B1	B2	В3	C1	C2	C3
Fiabilité	0,75	0,88	0,91	0,87	0,89	0,93	0,96	0,97	0,98

Maintenance Industrielle) - Chapitre 2. TD n° 2

L3-ELT- ES 672-2019-2020

Préparé par : Mr B.Belarbi

Série Nº 4

Exercice 1

- 1) Qu'appelle-t-on : Défaillance, Causes de défaillance, Modes de défaillance ?
- 2) Que désigne l'AMDEC?
- 3) Citez trois types d'AMDEC?
- 4) Citez quatre mécanismes de défaillances mécaniques par détérioration de surface ?
- 5) Citez les trois parties constituant le Dossier Technique Equipement?

Exercice 2

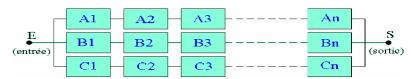
Complétez le tableau suivant ?

$C = F \times D \times G$

Grandeur	Désignation	Valeurs possibles		
С				
F				
D				
G				

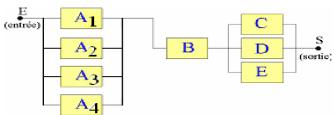
Exercice 3

Indiquez suivant le niveau de C les actions correctives à engager ?


	8 8
NIVEAU de C	ACTIONS CORRECTIVES À ENGAGER
1 ≤ C < 10 C négligeable	
10 ≤ C < 20 C moyenne	
20 ≤ C < 40 C élevée	
40 ≤ C < 64 C interdite	

Exercice 4

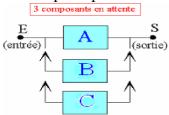
Calculez les disponibilités intrinsèque et opérationnelle d'une machine ayant fonctionné pendant 9000 heures avec 10 pannes dont les durées étaient : 14 ; 10; 15 ; 20; 26 ; 12 ; 5,5 ; 36; 23,5 et 38 heures et une moyenne des temps logistiques de maintenance de 55 heures.


Exercice 5

Calculez la disponibilité du dispositif proposé si n=5 ; DA1=DA2=...=DAn=0,9 ; DB1=DB2=...=DBn=0,93 ; DC1=DC2=...=DCn=0,97.

Exercice 6

Calculez la disponibilité du dispositif suivant si pour i=1à 4, D_{Ai} =0,91 ; D_{B} =0,93 ; D_{C} =0,8 ; D_{D} =0,78 et D_{E} =0,90.



Série N°5

Exercice 1:

Le taux de défaillance du composant A du dispositif proposé est de 24 défaillances pour million d'heures. Les composants A, B et C sont supposés identiques. Si A le composant actif tombe en panne, il est remplacé par B. Si B tombe à son tour en panne, il est automatiquement remplacé par C.

- 1) Déterminer la fiabilité de dispositif?
- 2) Comparer avec le cas où les trois composants sont connectés en parallèle ?

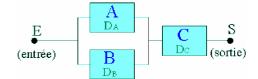
Exercice 2:

- 6) Définir la fiabilité, la maintenabilité, la disponibilité, la durabilité ?
- 7) Quels sont les deux principaux indicateurs de maintenabilité ? Les définir ?
- 8) Quelles sont les deux formes de la disponibilité ? Les définir ?

Exercice 3:

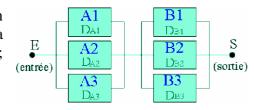
La disponibilité intrinsèque d'un dispositif est fixée à 0,98. La MTBF est de 450 heures. Quel doit être le MTTR correspondant ?

Exercice 4:


Calculer les disponibilités intrinsèques et opérationnelles d'un dispositif sachant que le temps de bon fonctionnement est de 10000 heures ; avec 18 opérations de maintenance dont la durée totale est de 75 heures et une moyenne des temps logistiques de maintenance de 45 heures.

Exercice 5:

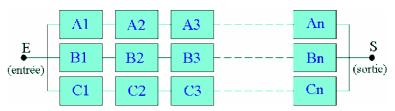
Calculer le MTTR d'un dispositif dont les durées en minutes de 50 tâches successives de maintenance corrective sont : 50; 48; 33; 35; 53; 73; 65; 56; 83; 82; 61; 42; 45; 54; 27; 52; 62; 65; 54; 38; 29; 59; 61; 36; 49; 58; 55; 57; 31; 44; 20; 43; 38; 73; 76; 64; 41; 62; 77; 27; 47; 49; 55; 53; 66; 62; 40; 53; 87; 23.


Exercice 6:

Déterminer la disponibilité du système si DA=0,8 ; DB=0,89 et DC=0,92 ?

Exercice 7:

Le système est composé de deux dispositifs en parallèle connectés en série. Déterminez la disponibilité globale si DA1=0.91; DA2=0.88; DA3=0.75; DB1=0.87; DB2=0.93 et DB3=0.89.

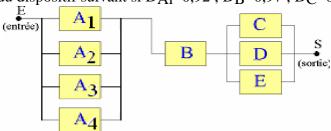


Exercice 8:

Reprendre l'exercice 7 avec trois dispositifs de trois composants en parallèle connectés en série (au lieu de deux) et avec DA=DA1=DA2=DA3=0,62; DB=DB1=DB2=DB3=0,71 et DC=DC1=DC2=DC3=0,55.

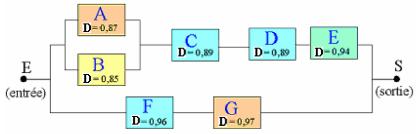
Exercice 9:

Déterminer la disponibilité DS du dispositif proposé si n=5 ; DA=DA1=DA2=...=DAn=0.95 ; DB=DB1=DB2=...=DBn=0.89 ; DC=DC1=DC2=...=DCn=0.91.



Exercice 10:

Reprendre l'exercice 9 avec n=20 et en supposant que tous les composants ont même disponibilité $D = 0.90 = DA_i = DB_i = DC_i$


Exercice 11:

Calculer la disponibilité du dispositif suivant si D_{Ai} =0,92 ; D_{B} =0,97 ; D_{C} =0,85 ; D_{D} =0,78 et D_{E} =0,90.

Exercice 12:

Calculer la disponibilité du dispositif proposé ?

Exercice 13

- 1) Compléter le graphe des différentes formes de la maintenance ? (répondre sur page 2)
- 2) Quelle est la différence entre entretien et maintenance ?
- 3) Définir la maintenance systématique ?

Exercice 14

Compléter le tableau suivant en écrivant la forme correcte de la maintenance à la place des points puis en mettant une croix devant la bonne réponse.

NB: une croix sera notée si et seulement si la forme correcte de la maintenance est indiquée.

Maintenance d'une automobile	Maintenance		Maintenance	
	Systématique			
1. Changer les plaquettes de frein au témoin d'usure.				
2. Changer les disques de frein.				
3. Changer la courroie de distribution à 100000 Km.				
4. Changer un cardan.				
5. Changer la batterie d'accumulateurs.				
6. Echanger une roue crevée.				
7. Changer les bougies.				
8. Changer le filtre à air et le filtre à huile.				

Exercice 15

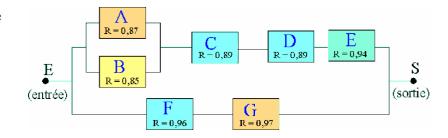
- 1) Quels sont les deux principaux indicateurs de la fiabilité ?
- 2) Les définir et donner ses formules? Indiquer leurs unités ?

Exercice 16

Le système de réservation d'une agence de voyage se compose de quatre micro-ordinateurs en parallèle ayant tous la même fiabilité R=0,6.

1) Calculer la fiabilité du système ?

Maintenance Industrielle) - Chapitre 2. TD n° 2


L3-ELT- ES 672-2019-2020

Préparé par : Mr B.Belarbi

2) Quelle doit être la fiabilité R' de chaque poste si l'on souhaite une fiabilité globale du système de 99,9% ?

Exercice 17

Calculer la fiabilité de l'ensemble du dispositif proposé ?

