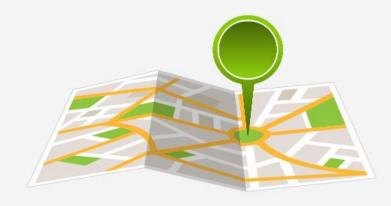


Global Positioning System

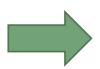

CHAPITRE III

MODELISATION DES OBSERVATIONS GPS

Mesure de code (pseudo-distance)

Mesure de phase

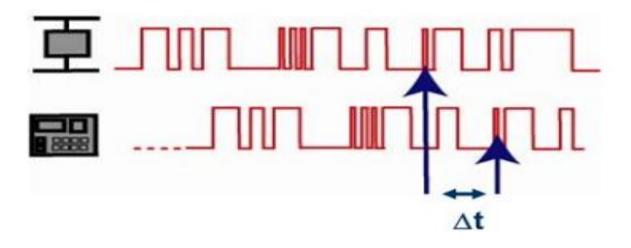
Formation de différences



Mesure de code (pseudo-distance)

- Le signal reçu par un récepteur GPS contient un code de bruit pseudo-aléatoire qui est différent d'un satellite à l'autre.
- code reçu comparaison code généré localement par le récepteur
- Récepteur peut calculer le temps de propagation du signal et en déduire la distance qui le sépare du satellite.

Condition


- ✓ Les horloges du récepteur et du satellite soient parfaitement synchronisées.
- ✓ Aucune perturbation dans la propagation du signal dans l'espace et lors de la transmission et de la réception.

En réalité, ces conditions sont impossibles à réaliser, la distance mesurée par le récepteur est entachée d'erreurs (Pseudo-distance).

Précision du positionnement : allant de 15 m à 50 cm, selon le type de traitement

Mesure de code (pseudo-distance)

 $D=c.\Delta t$

c: célérité (299 792 458 m/s)

Mesure de code (pseudo-distance)

L'équation d'observation pour les mesures de de code effectuées par un récepteur :

$$P_{r}^{s}(t_{r},t^{s}) = \rho_{r}^{s}(t_{r},t^{s}) + d\rho_{r}^{s}(t_{r},t^{s}) - c(\delta t_{r} - \delta t^{s}) + \frac{I}{f^{2}} + T + m + c(b_{r} - b^{s}) + \nu$$

- ρ : distance géométrique entre le satellite s et le récepteur r, (t^s : temps de transmission) et (t_r : temps de réception): $\rho_r^s(t_r,t^s) = \sqrt{(x_r-x^s)^2+(y_r-y^s)^2+(z_r-z^s)^2}$
- I: paramètre de retard ionosphérique (=40.30×TEC; le TEC est mesuré en électrons/m²);
- dρ: erreur d'orbite (en mètre, m);
- T: retard troposphérique (en m);
- m : mesures de retard dû aux multitrajets (en m);
- δt_r et δt^s : erreurs d'horloge de récepteur r (non modélisable) et de satellite s, respectivement (en seconde, s);
- v : bruit de mesure sur le code (en m) ;
- b_r et b^s: biais électronique du récepteur r et du satellite s, respectivement ;
- f: fréquence de signal porteuse (L1=1575.42 MHz et L2=1227.60 MHz);

Mesure de phase

Le récepteur mesure une **différence de phase** entre la phase générée par le récepteur et la phase générée par le satellite.

Distance récepteur-satellite.

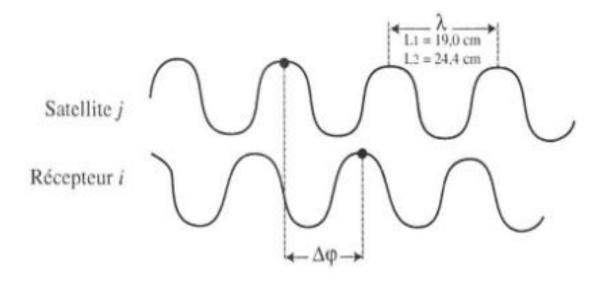
Néanmoins, la mesure de phase est aussi entachée d'erreurs ; ainsi des **ambiguïtés (N)** seront rajoutées sous forme d'**inconnues** supplémentaires.

N: représente le <u>nombre entier</u> de <u>longueurs d'onde</u> entre le récepteur et le satellite.

En effet, la mesure de phase donne <u>uniquement</u> une mesure de la <u>fraction de longueur d'onde</u> à laquelle **il faut ajouter** un **nombre entier de longueurs d'onde** pour retrouver la distance récepteur-satellite.

Précision du positionnement : allant de 50 cm à 5 mm, selon le type de traitement

Mesure de phase


L'équation d'observation pour les mesures de phase sur l'onde porteuse Φ, exprimée en cycles, effectuées par un récepteur :

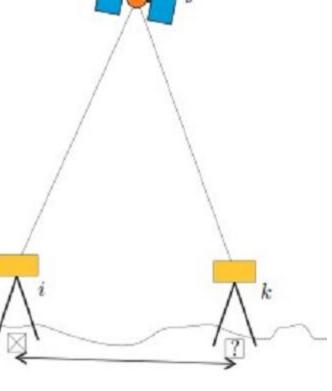
$$\lambda \Phi_r^s(t_r) = \rho_r^s(t_r, t^s) + d\rho_r^s(t_r, t^s) - c(\delta t_r - \delta t^s) - \frac{I}{f^2} + \lambda N_r^s + T + m + c(b_r - b^s) + \nu$$

 λ : longueur d'onde des porteuses L1 ou L2;

N: ambiguïté de cycle qui est liée à la méconnaissance du nombre de cycles entiers parcourus par la phase sur chacune des fréquences au premier instant où le signal du satellite est reçu par le récepteur.

Mesure de phase

$$\mathbf{D} = \lambda \cdot (\Delta \varphi + \mathbf{N})$$
mesuré inconnu

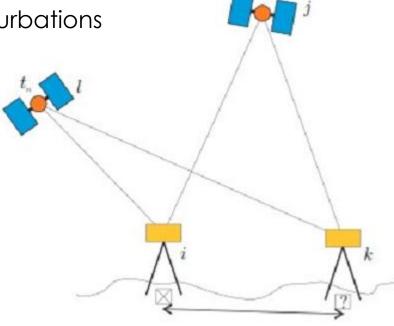

Formation de différences

Simple différence

La différence simultanée de mesures entre deux stations (k,i) et un satellite (j)

✓ Eliminer l'erreur d'horloge du satellite

✓ Réduire les effets d'erreurs d'orbite et de propagation de l'onde dans l'atmosphère (surtout pour des stations proches : atmosphères "identiques")

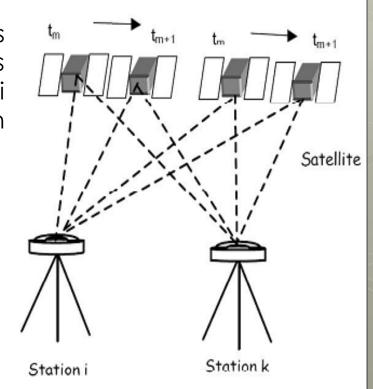

Formation de différences

Double différence

La combinaison de mesures de simple différence relatives à deux satellites (j,l) différents à la même époque avec deux récepteurs.

 ✓ éliminer les erreurs d'horloge des récepteurs

√ réduire les effets des perturbations atmosphériques et des orbites



Formation de différences

Triple différence

La différence de deux doubles différences pour deux époques consécutives (tm, tm+1).

- ✓ Eliminer les ambiguïtés entières.
- ✓ Rechercher et éliminer les sauts de cycles (discontinuité dans l'enregistrement des phases qui donne entre deux époques un nombre de cycles aberrant).

Université Aboubekr Belkaid, Tlemcen

Institut des Sciences Techniques et Appliquées

Chargé du cours : M. Abdennasser TACHEMA

Courriel: abdennasser.tachema@univ-tlemcen.dz

