3 - Etudier la régularité de la contrainte

La fonction g(x, y) = 4x + 3y - 5 est affine, donc la contrainte est un ensemble régulier.

- 4 Rechercher les points critiques du P3
 - a. Calcul du Lagrangien

Les fonctions f et g sont continues et différentiables (de classe C^1).

$$L(x, y, \lambda) = x^2 + y^2 + \lambda(4x + 3y - 5)$$

b. Rechercher les points critiques du Lagrangien

$$\nabla L(x, y, \lambda) = \begin{cases} 2x + 4\lambda \\ 2y + 3\lambda \\ 4x + 3y - 5 \end{cases}$$

Pour trouver les points critiques du L, il faut résoudre le système d'équation :

$$\begin{cases} 2x + 4\lambda = 0 & (L1) \\ 2y + 3\lambda = 0 & (L2) \\ 4x + 3y - 5 = 0 & (L3) \end{cases}$$

(L1)
$$\longleftrightarrow \lambda = -\frac{x}{2}$$

(L2)
$$\longleftrightarrow \lambda = -\frac{2}{3}y$$

Ainsi:
$$-\frac{x}{2} = -\frac{2}{3}y \quad \leftarrow \rightarrow x = \frac{4}{3}y$$

(L3)
$$\iff$$
 $4\left(\frac{4}{3}y\right) + 3y - 5 = 0 \iff \frac{16}{3}y + 3y - 5 = 0 \iff 16y + 9y - 15 = 0 \iff 25y - 15 = 0$

$$\leftrightarrow y = \frac{3}{5} \rightarrow x = \frac{4}{5} \rightarrow \lambda = -\frac{2}{5}$$

Le lagrangien admet un point critique $(\frac{4}{5}, \frac{3}{5}, -\frac{2}{5})$. Puisque la contrainte C est régulière, alors $(\frac{4}{5}, \frac{3}{5})$ est un point critique du problème P2.

5 - f est strictement convexe et C est convexe, donc le problème P2 admet un minimum global égal à $f\left(\frac{4}{5}, \frac{3}{4}\right) = 1$ au point $\left(\frac{4}{5}, \frac{3}{5}\right)$.

Exercice 6 : Soit le problème d'optimisation (P3) suivant :

$$Min f(x,y) = x^4 + y^4$$

s.c. $x^2 + y^2 = 1 - - - (C)$

- 1- Montrer que P3 admet au moins une solution.
- 2- Est-elle unique?
- 3- Etudier la régularité de la contrainte
- 4- Trouvez les points critiques de ce problème.
- 5- Déterminer la(les) solutions du P3.

P3 est un problème d'optimisation en deux dimensions avec une seule contrainte :

$$g(x,y) = x^2 + y^2 - 1 = 0$$

1- Montrer que P3 admet au moins une solution.

Pour cela,:

- 1- il faut montrer que f est continu sur C.
- 2- il faut montrer que C est fermée.
- 3- il faut que l'une des deux conditions suivantes soit vérifiée :
 - a. f est coércive
 - b. C est borné.

1- Montrer que f est continu sur C.

f est un polynôme de 4^{ème} dégrée, donc f est continu sur R^2 , par conséquent f est **continu** sur C ($C \subset R^2$).

2- Montrer que C est fermé.

$$C = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 = 1\}$$

L'ensemble $\{1\}$ est fermé, et donc son image réciproque par la fonction $x^2 + y^2$ (qui est continue sur R^2), est un ensemble fermée.

Ainsi, l'ensemble C est fermé.

3- f est-elle coércive ? ou bien C est-elle borné ?

• f est-elle coércive?

Posons:
$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases} \text{ avec } r > 0 \text{ et } \theta \in [0, 2\pi[$$

La fonction radiale Φ_f associée à f est

$$\begin{split} \Phi_f(r,\theta) &= r^2 \cos^2(\theta) + r^2 \sin^2(\theta) + 2r^2 \cos(\theta) \cdot \sin(\theta) \\ &= r^2 \left(\cos^2(\theta) + \sin^2(\theta) + 2\cos(\theta) \cdot \sin(\theta)\right) \\ &= r^2 (1 + 2\cos(\theta) \cdot \sin(\theta)) \\ &\lim_{||(x,y)|| \to +\infty} f(x,y) = \lim_{r \to +\infty} \Phi_f(r,\theta) \\ &= \lim_{r \to +\infty} r^4 (\cos^4(\theta) + \sin^4(\theta)) \end{split}$$

Le terme $\cos^4(\theta) + \sin^4(\theta)$ est strictement positif $\forall \theta \in [0, 2\pi]$.

Ainsi :
$$\lim_{||(x,y)|| \to +\infty} f(x,y) = +\infty$$
 et donc f est coércive.

f est continue et coércive et C est fermé, donc le problème P3 admet au moins une solution.

2- La solution est-elle unique ? (un minimum global en un seul point).

Rappel: En plus des hypothèses d'existence de solution, si **f** est strictement convexe et **C** est convexe, alors le problème d'optimisation admet une seule solution (un minimum global à un seul point).

L'ensemble C n'est pas convexe. C'est un cercle (démonstration graphique).

Ainsi, la solution n'est pas unique.

3- Etudier la régularité de la contrainte

La vérification de régularité (qualification) permet de vérifier si les points critiques du lagrangien X* sont aussi des points critiques du problème d'optimisation.

L'ensemble C est régulier

Voir la réponse de la question 3 de l'exercice 4.

4- Trouver les points critiques du P3

a. Calcul du Lagrangien

Les fonctions f et g sont continues et différentiables (de classe C^1).

$$L(x, y, \lambda) = x^4 + y^4 + \lambda(x^2 + y^2 - 1)$$

b. Rechercher les points critiques du Lagrangien

$$\nabla L(x, y, \lambda) = \begin{cases} 4x^3 + 2\lambda x \\ 4y^2 + 2\lambda y \\ x^2 + y^2 - 1 \end{cases}$$

Pour trouver les points critiques du L, il faut résoudre le système d'équation :

$$\begin{cases} 4x^3 + 2\lambda x = 0 & (L1) \\ 4y^2 + 2\lambda y = 0 & (L2) \\ x^2 + y^2 - 1 = 0 & (L3) \end{cases} \longleftrightarrow \begin{cases} 2x^3 + \lambda x = 0 & (L1) \\ 2y^2 + \lambda y = 0 & (L2) \\ x^2 + y^2 - 1 = 0 & (L3) \end{cases}$$

C'est un système d'équations de 3 équations non-linéaires.

Rappel : Si on a p constraintes g_i , donc on a 2^p cas à étudier.

On distingue dans notre problème (p = 1), 2 cas.

Le 1^{er} cas : $\lambda = 0$

$$\begin{cases} 2x^3 = 0 & x = 0 \\ 2y^2 = 0 & \longleftrightarrow y = 0 \\ x^2 + y^2 - 1 = 0 & -1 = 0 \end{cases}$$
 Impossible, donc cette solution est refusée.

Le $2^{\hat{e}me}$ cas : $\lambda \neq 0$

(L1)
$$\longleftrightarrow x(2x^2 + \lambda) = 0 \longleftrightarrow x = 0$$
 ou $2x + \lambda = 0$

(L2)
$$\longleftrightarrow$$
 $y(2y^2 + \lambda) = 0 \longleftrightarrow y = 0$ ou $2y + \lambda = 0$

a.
$$x = 0$$

 $y = 0$ \longleftrightarrow (-1=0) Impossible, donc cette solution est refusée.

b.
$$x = 0$$

 $2y^2 + \lambda = 0$ $\iff y^2 = -\frac{\lambda}{2}$
On remplace y^2 par $-\frac{\lambda}{2}$ dans (L3), on obtient : $0 + \left(-\frac{\lambda}{2}\right) = 1 \iff \lambda = -2$

$$\leftarrow \rightarrow y^2 = 1 \leftarrow \rightarrow y = 1 \text{ ou } y = -1$$

Les solutions obtenues dans ce cas (b) : : $X_1(0,1)$ et $X_2(0,-1)$ avec $\lambda = -2$.

c.
$$y = 0$$

$$2x^2 + \lambda = 0 \quad \longleftrightarrow x^2 = -\frac{\lambda}{2}$$

On remplace x^2 par $-\frac{\lambda}{2}$ dans (L3), on obtient : $\left(-\frac{\lambda}{2}\right) + 0 = 1 \iff \lambda = -2$ $\iff x^2 = 1 \iff x = 1 \text{ ou } x = -1$

Les solutions obtenues dans ce cas (c) : $X_3(1,0)$ et $X_4(-1,0)$ avec $\lambda = -2$.

d.
$$2x^2 + \lambda = 0 \atop 2y^2 + \lambda = 0 \longleftrightarrow y^2 = -\frac{\lambda}{2}$$

 $y^2 = -\frac{\lambda}{2}$

On remplace dans (L3), x^2 et y^2 par $-\frac{\lambda}{2}$. On obtient : $-\frac{\lambda}{2} - \frac{\lambda}{2} - 1 = 0 \iff \lambda = -1$

$$x^2 = \frac{1}{2} \longleftrightarrow x = \mp \frac{1}{\sqrt{2}}$$

$$y^2 = \frac{1}{2} \longleftrightarrow y = \mp \frac{1}{\sqrt{2}}$$

Les solutions obtenues dans ce cas (d): $X_5(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$, $X_6(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$, $X_7(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$ et $X_8(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ avec $\lambda = -2$.

Le lagrangien admet 8 points critiques $X_1(0,1,-1), X_2(0,-1,-1), X_3(1,0,-1), X_4(-1,0,-1), X_5(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},-2), X_6(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},-2), X_7(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},-2)$ et $X_8(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},-2)$.

Nous avons démontré dans la question 3 que tout l'ensemble C est régulier. Ainsi, les points $X_1(0,1)$, $X_2(0,-1)$, $X_3(1,0)$, $X_4(-1,0)$, $X_5(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$, $X_6\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$, $X_7(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})$ et $X_8(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$ sont des points critiques du problème P3.

5- Déterminer la(les) solutions du P3.

$$f(X_1) = f(X_2) = f(X_3) = f(X_4) = 1$$

$$f(X_5) = f(X_6) = f(X_7) = f(X_8) = \frac{1}{2}$$

Le problème P3 admet un minimum global égal à $\frac{1}{2}$ aux points $X_5(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}), X_6\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right), X_7(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})$ et $X_8(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$.

Exercice 7 : Soit le problème d'optimisation (P4) suivant :

Min
$$f(x,y) = x^2 + y^2 + z^2$$

s.c. $x + 2y + z = 1$
 $2x - y - 3z = 4$

- 1- f est-elle continue? coércive? convexe (par deux méthodes)? justifier.
- 2- C est-elle fermée ? bornée ? convexe ? justifier.
- 3- Déduire que P4 admet au moins une solution.
- 4- Déduire que P4 admet une seule solution.
- 5- L'ensemble formée par la contrainte C est-il régulier (contrainte qualifiée) ? justifier.
- 6- Trouvez la solution de ce problème.

- 1- f est-elle continue? coércive? strictement convexe (par deux méthodes)? justifier.
 - f est un polynôme de $2^{\text{ème}}$ degré $\rightarrow f$ est continue sur R^3 (sur C aussi)
 - f est-elle coércive ? il faut calculer $\lim_{\|(x,y,z)\|\to+\infty} f(x,y,z) = ?$

Posons:

$$\begin{cases} x = r\cos\theta\sin\varphi \\ y = r\sin\theta\sin\varphi \\ z = r\cos\varphi \end{cases}$$

avec r > 0, $\theta \in [0,2\pi[$ et $\varphi \in [0,\pi[$.

$$\lim_{||(x,y,z)||\to +\infty} f(x,y,z) = \lim_{r\to +\infty} \Phi_f(r,\theta,\varphi)$$

$$= \lim_{r\to +\infty} r^2 \cos^2(\theta) \sin^2(\varphi) + r^2 \sin^2(\theta) \sin^2(\varphi) + r^2 \cos^2(\varphi)$$

$$= \lim_{r\to +\infty} r^2 (\cos^2(\theta) \sin^2(\varphi) + \sin^2(\theta) \sin^2(\varphi) + \cos^2(\varphi))$$

Le terme $\cos^2(\theta)\sin^2(\varphi) + \sin^2(\theta)\sin^2(\varphi) + \cos^2(\varphi)$ est strictement positif.

Donc:
$$\lim_{||(x,y,z)||\to+\infty} f(x,y,z) = \lim_{r\to+\infty} r^2 = +\infty$$

Ainsi : *f* est coércive.

• f est-elle strictement convexe? Oui

Méthode 1: f est une somme de 3 fonctions strictement convexes multipliées par des coefficients positifs (+1).

Méthode 2 : à travers la matrice Hessienne.

$$\nabla f(x,y,z) = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}, \quad \nabla^2 f(x,y,z) = Hess \ f(X) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad , \begin{cases} \Delta_1 = 2 > 0 \\ \Delta_2 = 2 > 0 \\ \Delta_3 = 2 > 0 \end{cases}$$

- 2- C est-elle fermée ? bornée ? convexe ? justifier.
 - C est-elle fermée ?

$$C = \{(x, y, z) \in R^3, x + 2y + z = 1, 2x - y - 3z = 4\}$$

Cet ensemble \mathcal{C} est fermé car c'est l'intersection de deux ensemble \mathcal{C}_1 et \mathcal{C}_2 fermés :

$$C_1 = \{(x, y, z) \in R^3, x + 2y + z = 1\}$$

$$C_2 = \{(x, y, z) \in R^3, 2x - y - 3z = 4\}$$

Démonstration graphique.

C est-elle bornée ?

 C_1 et C_2 sont deux plans dans un espace 3D. Son intersection forme une droite, donc C n'est pas borné.

• C est-elle convexe? Oui, car elle forme une droite.

3- Déduire que P4 admet au moins une solution.

f est continue et coércive et l'ensemble C est fermé, alors le problème P4 admet au moins une solution (un minimum global en **au moins un seul** point) dans C.

4- Déduire que P4 admet une seule solution (un minimum global en un seul point).

En plus, f est strictement convexe et C est convexe, alors P4 admet une seule solution.

5- L'ensemble formée par la contrainte *C* est-il régulier (contrainte qualifiée) ? justifier.

L'ensemble C est formé par deux fonctions $g_1(x,y,z) = x + 2y + z - 1$ et $g_2(x,y,z) = 2x - y - 3z - 4$ qui sont affines, alors l'ensemble C est régulier.

- 6- Trouvez la solution de ce problème.
 - a. Calcul du Lagrangien

Les fonctions f et g sont continues et différentiables (de classe C¹).

$$L(x, y, \lambda) = x^2 + y^2 + z^2 + \lambda_1(x + 2y + z - 1) + \lambda_2(2x - y - 3z - 4)$$

b. Rechercher les points critiques du Lagrangien

$$\nabla L(x, y, \lambda) = \begin{cases} 2x + \lambda_1 + 2\lambda_2 \\ 2y + 2\lambda_1 - \lambda_2 \\ 2z + \lambda_1 - 3\lambda_2 \\ x + 2y + z - 1 \\ 2x - y - 3z - 4 \end{cases}$$

Pour trouver les points critiques du L, il faut résoudre le système d'équation :

$$\begin{cases} 2x + \lambda_1 + 2\lambda_2 = 0 & (L1) \\ 2y + 2\lambda_1 - \lambda_2 = 0 & (L2) \\ 2z + \lambda_1 - 3\lambda_2 = 0 & (L3) \\ x + 2y + z - 1 = 0 & (L4) \\ 2x - y - 3z - 4 = 0 & (L5) \end{cases} \longleftrightarrow \begin{cases} 2x + \lambda_1 + 2\lambda_2 = 0 & (L1) \\ 2y + 2\lambda_1 - \lambda_2 = 0 & (L2) \\ 2z + \lambda_1 - 3\lambda_2 = 0 & (L3) \\ x + 2y + z = 1 & (L4) \\ 2x - y - 3z = 4 & (L5) \end{cases}$$

C'est un système d'équations de 5 équations linéaires. Pour le résoudre, on utilise la méthode du pivot de Gauss.

$$\begin{cases} 2x + 0y + 0z + \lambda_1 + 2\lambda_2 = 0 & (L1) \\ 0x + 2y + 0z + 2\lambda_1 - \lambda_2 = 0 & (L2) \\ 0x + 0y + 2z + \lambda_1 - 3\lambda_2 = 0 & (L3) \longleftrightarrow \\ x + 2y + z + 0\lambda_1 + 0\lambda_2 = 1 & (L4) \\ 2x - y - 3z + 0\lambda_1 + 0\lambda_2 = 4 & (L5) \end{cases}$$

$2x + 0y + 0z + \lambda_1 + 2\lambda_2 = 0$	L1
$x + 2y + 0z + \frac{5}{2}\lambda_1 + 0\lambda_2 = 0$	$L2 = L2 + \frac{1}{2}L1$
$3x + 0y + 2z + \frac{5}{2}\lambda_1 + 0\lambda_2 = 0$	$L3 = L3 + \frac{3}{2}L1$
$x + 2y + z + 0\lambda_1 + 0\lambda_2 = 1$	L4
$2x - y - 3z + 0\lambda_1 + 0\lambda_2 = 4$	L5

$\leftarrow \rightarrow$

$2x + 0y + 0z + \lambda_1 + 2\lambda_2 = 0$	L1
$3x + 0y + 2z + \frac{5}{2}\lambda_1 = 0$	L3
-2x + 2y - 2z = 0	L2 = L2 - L3
x + 2y + z = 1	L4
2x - y - 3z = 4	L5

$2x + 0y + 0z + \lambda_1 + 2\lambda_2 = 0$	L1
$3x + 0y + 2z + \frac{5}{2}\lambda_1 = 0$	L3
-2x + 2y - 2z = 0	L2
5x - 4y = 4	$L5 = L5 - \frac{3}{2}L2$
3y = 1	$L4 = L4 + \frac{1}{2}L2$

$$\Rightarrow y = \frac{1}{3}$$
 , $x = \frac{16}{15}$, $z = -\frac{11}{15}$, $\lambda_1 = -\frac{52}{75}$, $\lambda_2 = -\frac{54}{75}$

Le lagrangien admet un point critique $(\frac{1}{3}, \frac{16}{15}, -\frac{11}{15}, -\frac{52}{75}, -\frac{54}{75})$. Et puisque nous avons démontré dans la question 6 que tout l'ensemble C est régulier), alors $X^*(\frac{1}{3}, \frac{16}{15}, -\frac{11}{15})$ est un point critique du problème P4.

Nous avons démontré aussi (dans la question 4) que le problème P4 admet une seule solution (un minimum global en un **seul** point). Ainsi, le problème P4 admet un minimum global $f\left(\frac{1}{3}, \frac{16}{15}, -\frac{11}{15}\right) = \frac{134}{75}$ à le seul point critique $X^*\left(\frac{1}{3}, \frac{16}{15}, -\frac{11}{15}\right)$.