course:
 Financial Mathematics

Khaldi khadidja

UNIVERSITY OF TLEMCEN
Economic and Management Sciences

```
                جامعة أبو بكر بلقايد -تلمسان
كلية العلوم الاقتصـادية والتسيير والعلوم التجارية
```

Financial Mathematics
1

Unit Subject

Linear Equations Quadratic Equations

We will see in this unit

1. Linear Equations in One Variable

Formulae
Solving a Linear Equation in One Variable Applications
2. Quadratic Equations in One Variable Formulae
Solving a quadratic Equation in One Variable Applications

LEARNING OUTCOMES

At the end of this unit, you should be able to:

1. Understand what is meant by "linear equation" and "quadratic equation"
2. Understand how to solve linear and quadratic linear equations.
3. Solve equations for real world situations in order to solve problems, especially economic and financial.

Math Review

Linear Equation:

Any equation written in the form

$$
A x+B=C
$$

Is said a linear equation where A, B and C are fixed numbers and $A \neq 0$

Examples

- $x-5=16$
- $2 y+4=12$
- $5 n-4=6$
- $z / 2-6=4$

Math Review

How to solve linear equation?

Two Steps for Solving linear Equations

Step1- Solve for any Addition or Subtraction on the variable side of equation by "undoing" the operation from both sides of the equation.

Step2- Solve any Multiplication or Division from variable side of equation by "undoing" the operation from both sides of the equation.

Math Review
 Ma
 \qquad

$$
\begin{aligned}
& \text { Example : Solve } 4 x-5=15 \\
& 4 x-5=15
\end{aligned}
$$

$$
5
$$

r er

- Try the above Examples:

$$
x-5=16 ; 2 y+4=12 ; 5 n-4=6 ; z / 2-6=4
$$

\square

$$
=6 ; z / 2-6=4
$$

保

$$
\text { solutions: } x=; y=; n=; z=
$$ solutions: $x=; y=; n=; z=$

$$
; y=; n=; z=
$$

.
.

.
 -

$$
7
$$

 \square J
 \square

Math Review

Quadratic Equation:

Any equation written in the form

$$
A x^{2}+B x+C=0
$$

Is said a quadratic equation where A, B and C are fixed numbers and $A \neq 0$

Examples

$$
\begin{aligned}
& 4 x^{2}+x+1=0 \\
& 4 x^{2}-4 x+1=0 \\
& x^{2}+8 x-20=0
\end{aligned}
$$

Math Review

How to solve quadratic equations ?

Quadratic equations can be solved using Discriminant method

Step1 : Express the equation in a general form

$$
A x^{2}+B x+C=0
$$

Step2 : Calculate the discriminant: $\quad \Delta=B^{2}-4 A C$
Step 3: Give solution
Case1: $\Delta<0$ no real roots
Case2: $\Delta=0$ only one real root $r=\frac{-B}{2 A}$
Case3: $\Delta>0$ two distinct real roots

$$
r_{1}=\frac{-B-\sqrt{\Delta}}{2 A} \quad \text { and } \quad r_{2}=\frac{-B+\sqrt{\Delta}}{2 A}
$$

Math Review

Example: Solve the quadratic equation if possible

$$
4 x^{2}+x+1=0
$$

$4 x$
Step 1 :
Step 2 :
Step 1 :

$$
2
$$

Step 3: ,

\square
\square
\square

Math Review

Example2: Solve the quadratic equation

$$
4 x^{2}-4 x+1=0
$$

Step1 :

Step2 :
Step 3:
!!! We can rewrite the quadratic equation

Math Review

 Example：Solve the quadratic equation$$
x^{2}+8 x-20=0
$$

Step 1 ：
！！！We can rewrite the quadratic equation

\qquad －
（2）－ （

Step 2 ：
\section*{Step 3：}

．

\square

 Example：Solve the quadratic equation\square

$$
1
$$

 ． O
.
\qquad

.
\qquad
\qquad

Math Review

Example4: Solve the quadratic equation

$$
x^{2}-4 x=-3
$$

Step1 : rewrite the equation in general form

$$
A=, B=\text { and } C=
$$

Step2 :

!!! We can rewrite the quadratic equation

Step 3:

Applications of linear and quadratic equations in economic problems:

Example1:

The demand and supply equations for a good are given respectively by :

$$
\begin{aligned}
& P=100-0.5 Q_{d} \\
& P=5+0.5 Q_{s}
\end{aligned}
$$

Calculate the equilibrium quantity \& price

- Step 1: Set the right-hand side of both equations to equal on another \& solve for $Q^{*}\left(Q^{*}=Q_{d}=Q_{s}\right.$ in equilibrium $)$
- Step 2: Substitute Q^{*} into either equation \& solve for P^{*} ($P^{*}=P$ in equilibrium)

Example2:

The weekly demand and supply equations for a good are given respectively by :

$$
\begin{aligned}
& P=-(Q-40)^{2}-10(Q-40)+400 \\
& P=(Q-40)^{2}+20(Q-40)+200
\end{aligned}
$$

Where P is measured in dollars and Q is measured in units of a hundred. Calculate the equilibrium quantity \& price

We will see in the next unit

1. Essential rules of differentiation
2. Second and higher derivatives
3. Critical points
4. Optimization of functions of one variable

UNIVERSITY OF TLEMCEN
Economic and Management Sciences

```
                جامعة أبو بكر بلقايد -تلمسان
كلية العلوم الاقتصـادية والتسيير و العلوم التجارية
```

Financial Mathematics
Number Unit
2

Derivability
 Critical points
 Optimization of functions

We will see in this unit

1. Essential rules of differentiation
2. Second and higher derivatives
3. Critical points
4. Optimization of functions of one variable

LEARNING OUTCOMES

At the end of this unit, you should be able to:

1. Understand what is meant by "Optimization of functions of a single variable".
2. Apply some rules of differential calculus that are especially useful for decision making.
3. Find the critical points of a function.
4. Apply derivatives to real world situations in order to optimize unconstrained problems, especially economic and finance.

Math Review

Derivative of Function

Definition1:

Differentiation is a method to compute the rate at which a dependent output y changes with respect to the change in the independent input x.

Definition2:

This rate of change is called the derivative of y (the function) with respect to x. The derivative gives the value of the slope of the tangent line to a curve at a point (rate of change).

Definition3:

The slope of the tangent line is very close to the slope of the line through ($a, f(a)$) and a nearby point on the graph, for example $(a+h, f(a+h))$.

$$
f^{\prime}(x)=\frac{d f}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Math Review

To simplify the determination of derivatives we can use the following rules.
1/ $\frac{d}{d x} k=(k)^{\prime}=0$

$$
\text { 3/ } \frac{d}{d x} x^{n}=\left(x^{n}\right)^{\prime}=n x^{n-1}
$$

$$
4 / \frac{d}{d x} c x^{n}=\left(c x^{n}\right)^{\prime}=n c x^{n-1}
$$

5/ $\frac{d}{d x} \sqrt{x}=(\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}}$ 6/ $\frac{d}{d x}\left(\frac{1}{x}\right)=\left(\frac{1}{x}\right)^{\prime}=\frac{-1}{x^{2}}$
7/ $\frac{d}{d x} \ln (x)=(\ln (x))^{\prime}=\frac{1}{x} \quad$ 8/ $\frac{d}{d x} e^{x}=\left(e^{x}\right)^{\prime}=e^{x}$

$$
\text { 2) } \frac{d}{d x} c x=(c x)^{\prime}=c
$$

\section*{Some rules of differentiation

 Some rules of}
 ules of differentiation

[^0]
Math Review

Second and Higher Derivatives

Given a function f we defined first derivative of the function as:

$$
f^{(1)}(x)=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

The second derivative is obtained by:

$$
f^{(2)}(x)=f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{(1)}(x+h)-f^{(1)}(x)}{h}
$$

And the n -th derivative is obtained by:

$$
f^{(n)}(x)=\lim _{h \rightarrow 0} \frac{f^{(n-1)}(x+h)-f^{(n-1)}(x)}{h}
$$

Math Review

Second and Higher Derivatives

Example:

1/ the function:

$$
f(x)=4 x^{5}-3 x^{2}+2 x-10
$$

2/ first derivative : $\quad f^{(1)}=f^{\prime}(x)=20 x^{4}-6 x+2$
3/ second derivative : $f^{(2)}=f^{\prime \prime}(x)=80 x^{3}-6$
4/ third derivative : $\quad f^{(3)}=f^{\prime \prime \prime}(x)=240 x^{2}$
5/ fourth derivative: $f^{(4)}=f^{\prime " \prime}(x)=480 x$
6/ fifth derivative: $f^{(5)}=f^{" \prime "}(x)=480$

Math Review

Classifications of Extreme Values

Absolute Minimum/Maximum - the smallest/largest function value in the domain
Local Minimum/Maximum - the smallest/largest function value in an open interval in the domain

Math Review

Critical points: local extrema

Definition:

A critical point of a function of a single real variable $f(x)$, is a value x_{0} in the domain of f where either the function is not differentiable or its derivative is $0, f^{\prime}(x)=0$.
\checkmark The point $M=\left(x_{0}, f\left(x_{0}\right)\right)$ is a local minimum if

$$
f^{\prime}\left(x_{0}\right)=0 \text { and } f^{\prime \prime}\left(x_{0}\right)>0
$$

\checkmark The point $M=\left(x_{0}, f\left(x_{0}\right)\right)$ is a local maximum if

$$
f^{\prime}\left(x_{0}\right)=0 \text { and } f^{\prime \prime}\left(x_{0}\right)<0
$$

Math Review

Maximum and Minimum points

Math Review

Example1:
Let $y=g(x)=x^{2}-3 x+2$
Find the critical point and determine its nature

$$
\begin{aligned}
g^{\prime}(x) & =2 x-3=0 \\
2 x & =3 \\
\therefore x_{0} & =\frac{3}{2} \quad(\text { critical value })
\end{aligned}
$$

Using the Second Derivative Test:

$$
g^{\prime \prime}(x)=2>0
$$

The point $M=\left(\frac{3}{2},-\frac{1}{4}\right)$ is an absolute minimum

Math Review

$\begin{aligned} & \text { Example2: Let } \\ & \text { Find the critical points and determine theii } Y_{\text {na }} \overline{\text { Ture }} \mathrm{f}\end{aligned} f(x)=x^{3}-3 x^{2}+2$
Example2: Let
Find the critical points and determine theii $Y_{\text {nature }} f(x)=x^{3}-3 x^{2}+2$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x=0 \\
& 3 x(x-2)=0 \\
& \quad \therefore x_{0}=0,2 \quad \text { (critical values) } \\
& f^{\prime}(x)=3 x^{2}-6 x=0 \\
& f^{\prime \prime}(x)=6 x-6
\end{aligned}
$$

Second Derivative Test:
secona Derivative Iest:

$$
\begin{array}{r}
f^{\prime \prime}(0)=6(0)-6=-6<0 \quad f^{\prime \prime}(2)=6(2)-6=6>0 \\
M_{1}=(0,2) \text { is a local maximum } M_{2}=(2,-2) \text { is a local minimum }
\end{array}
$$

Unconstrained optimization of one variable

Introduction:

- In economic, financial and business contexts, optimization is a frequently relied upon tool
- Optimization is used to maximize profits, minimize costs, etc.
- We break optimization down into two types:
- Unconstrained optimization: We seek to maximize or minimize functions without any restrictions.
- Constrained optimization: We impose limits on the values that our variables can take (for example budget constraints, level of inputs, etc.)
- On this unit we focus on unconstrained optimization.

Mathematical optimization

Mathematical optimization is the selection of the best element based on a particular criterion from a set of available alternatives. Optimization deals with the problem of finding numerically optimums (minimums or maximums) of a function. It consists of three components:

- The objective or objectives, that is, what do we want to optimize?
- A solution, that is, how can we achieve the optimal objective?
- The set of all feasible solutions, that is, among which possible options may we choose to optimize?

Unconstrained optimization of a function of one variable

Definition:

The standard form of a continuous unconstrained optimization problem can take the following expressions:

- $\min _{x} f(x)$ in case of a minimization problem
- $\max _{x} f(x)$ in case of a maximization problem
$f(x)$ is called the objective function and which represents the output you're trying to maximize or minimize.
Example:
Economic agents seek the optimal value of some objective function such as:
- Consumers maximize utility
- Firms maximize profit and minimize cost

Maximization of a function of one variable

First-order condition (FOC) for maximization:
For a function of one variable to attain its maximum value at some point, the derivative at that point must be zero

$$
\left(\left.\frac{d f}{d x}\right|_{x=x *}=\left(\left.f^{\prime}(x)\right|_{x=x *}=0\right.\right.
$$

FOC is a necessary condition for a maximum but not sufficient. Second order condition is required
Second-order condition for maximization:
We have a local maximum if the following is true:

$$
\left(\left.\frac{d^{2} f}{d x^{2}}\right|_{x=x *}=\left(\left.f^{\prime \prime}(x)\right|_{x=x *}<0\right.\right.
$$

Profit maximization function

Example:

Suppose a monopolist served a market that faced the inverse demand function of $p=250-2 q$ and a cost of production function of $c=50 \mathrm{q}$.
1- What value of q maximizes the monopolist's profit?
2 - What is the corresponding price and profit?

Solution:

1- In this example, the monopolist is maximizing his profit, $\max _{q} \pi(q)$
q
We must first determine the profit function
Profit $=$ total revenue - total cost $=p q-50 q$

$$
\pi(q)=(250-2 q) q-50 q=-2 q^{2}+250 q
$$

Profit maximization function

Then,

$$
\max _{q} \pi(q) \Leftrightarrow=\max _{q}\left(-2 q^{2}+200 q\right)
$$

First order condition for a maximum is:

$$
\begin{gathered}
\frac{d \pi}{d q}=\pi^{\prime}(q)=-4 q+200=0 \\
q^{*}=50
\end{gathered}
$$

Since the second derivative is always -4 (second order condition for a maximum is satisfied), then $q=50$ is the quantity that maximizes the monopolist's profit.
2- The corresponding price $=250-2 q^{*}=250-2(50)=150$
The corresponding Profit $=\pi(q)=-2 q^{2}+200 q=5000$

Minimization of a function of one variable

First-order condition (FOC) for minimization:
For a function of one variable to attain its minimum value at some point, the derivative at that point must be zero

$$
\left(\left.\frac{d f}{d x}\right|_{x=x *}=\left(\left.f^{\prime}(x)\right|_{x=x *}=0\right.\right.
$$

FOC is a necessary condition for a minimum but not sufficient. Second order condition is required.
Second-order condition for minimization:
We have a local minimum if the following is true:

$$
\left(\left.\frac{d^{2} f}{d x^{2}}\right|_{x=x *}=\left(\left.f^{\prime \prime}(x)\right|_{x=x *}>0\right.\right.
$$

Cost minimization function

Example:

A manufacturer of POS systems/credit card readers finds that the cost (in dollars) generated by manufacturing q units per week is given by the function $C(q)=0.15 q^{2}-39 q+4500$.
1- How many units should be manufactured to minimize the cost?
2- What is the corresponding cost?

Solution:

1- In this example, the manufacturer is minimizing his cost,

$$
\min _{q} C(q) \Leftrightarrow=\min _{q}\left(0.15 q^{2}-39 q+4500\right)
$$

First order condition for a minimum is:

$$
\begin{gathered}
\frac{d C}{d q}=C^{\prime}(q)=0.3 q-39=0 \\
q^{*}=130 \text { units }
\end{gathered}
$$

Cost minimization function

Since the second derivative is always 0.3 (second order condition for a minimum is satisfied), then $q=130$ is the quantity that minimizes cost.
2- Minimum cost:

$$
\begin{gathered}
C(q)=0.15 q^{2}-39 q+4500 \\
C(130)= \\
0.15\left(130^{2}\right)-39(130)+4500=\$ 1965
\end{gathered}
$$

we will see in the next unit

1. The inverse process of differentiation:

Integration.
2. The connection between integration and summation.
3. How to calculate area under a curve.
4. How to calculate area between two Curves.
5. How to calculate consumer surplus

UNIVERSITY OF TLEMCEN
Economic and Management Sciences

جامعة أبو بكر بلقايد -تلمسان كلية اللوم الاقتصـادية و النسيير و العلوم التجارية

Course
Unit course

Number Unit

Unit Subject
Integral Calculus

We will see in this unit

1. Integral calculus: Definition
2. Indefinite integral
3. Definite integral
4. Some rules of integral
5. Area between two curves
6. Economic Application: Consumer surplus

LEARNING OUTCOMES

At the end of this unit, you should be able to:

1. Understand what is meant by "integral of function".
2. Find definite or indefinite integrals.
3. Calculate the Area Between Two Curves.
4. Calculate the consumer surplus.

Integral calculus

Frequently, we know the rate of change of a function $f^{\prime}(x)$ and wish to find the original function $f(x)$. Reversing the process of differentiation and finding the original function from the derivative is called integration or antidifferentiation. The original function, $f(x)$, is called the integral or antiderivative of $f^{\prime}(x)$.
Thus, we have $\int f^{\prime}(x) d x=f(x)+c$

Integral calculus

Example 1:

1/ Find the derivative of $f_{1}(x)=c, f_{2}(x)=x, f_{3}(x)=x^{2}$
2/ Find the antiderivative of the results of question 1.

Solution:

$$
\begin{aligned}
& \text { 1/ } f_{1}^{\prime}(x)=0, f_{2}^{\prime}(x)=1, f_{3}^{\prime}(x)=2 x \\
& \text { 2/ } \int f_{1}^{\prime}(x) d x=\int 0 d x=c, \quad \int f_{2}^{\prime}(x) d x=\int 1 d x=x+c \\
& \int f_{3}^{\prime}(x) d x=\int 2 x d x=x^{2}+c
\end{aligned}
$$

Indefinite Integral

- The indefinite integral of a function is a function defined as: $\int f(x) d x=F(x)+c$
- Every antiderivative F of f must be of the form $F(x)=G(x)+c$, where c is a constant (constant of integration)
!!!

$$
\begin{aligned}
& \int 2 x d x=\underbrace{x^{2}+c}_{\begin{array}{c}
\text { Represents every possible } \\
\text { antiderivative of } 2 x .
\end{array}}
\end{aligned}
$$

Definite integral

If f is a continuous function, the definite integral of from a to b is defined as:

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

An integral = Area under a curve

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x
$$

$$
\Delta x=\frac{b-a}{n}=x_{k+1}^{k=1}-x_{k}
$$

Integral Calculus

Exemple1:

$\int_{a}^{b} f(x) d x=$ Area of $\mathrm{R}_{1}-$ Area of $\mathrm{R}_{2}+$ Area of R_{3}

Some rules of integration

To simplify the determination of antiderivatives we can use the following rules.

$$
\begin{array}{ll}
1 / \int d x=x+c & \text { 2/ } \int k d x=k x+c \\
3 / \int x^{n} d x=\frac{x^{n+1}}{n+1}+c & \text { 4/ } \int \frac{1}{x} d x=\ln |x|+c \\
5 / \int b^{x} d x=\frac{b^{x}}{\ln (b)}+c & \text { 6/ } \int e^{x} d x=e^{x}+c
\end{array}
$$

Some rules of integration

7/ $\int(f \pm g) d x=\int f d x \pm \int g d x$
8) $\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{a(n+1)}+C \quad(n \neq-1)$
9) $\int(a x+b)^{-1} d x=\frac{1}{a} \ln |a x+b|+C$

10/ $\int e^{a x+b} d x=\frac{1}{a} e^{a x+b}+C$
11/ $\int c^{a x+b} d x=\frac{1}{a \ln c} c^{a x+b}+C$

More examples

$$
\begin{aligned}
& \text { 1/ } \int 2 x \cdot d x= \\
& \text { 2/ } \int\left(6 y^{5}+3 y\right) d y= \\
& \text { 3/ } \int\left(\frac{1}{x}-e^{2 x}\right) d x= \\
& \text { 4/ } \int(6 x-1)^{2} d x= \\
& \text { 5/ } \int a b x^{3} \cdot d x=
\end{aligned}
$$

More Examples

$$
\begin{aligned}
& \text { 6/ } \int_{-1}^{1}\left(x^{2}-7 x+12\right) d x= \\
& \text { 7/ } \int_{0}^{-2}\left(3 x^{2}-3\right) d x= \\
& \text { 8/ } \int_{0}^{3}\left(e^{x}\right) d x= \\
& \text { 9/ } \int_{0}^{1}\left(e^{2 x+3}\right) d x= \\
& \text { 10/ } \int_{1}^{5}\left(2 x-\frac{1}{x}+1\right) d x=
\end{aligned}
$$

Area Between Two Curves

Let f and g be continuous functions, the area below $f(x)$ and above $g(x)$ over the interval $[a, b]$ is:

$$
R=\int_{a}^{b}[f(x)-g(x)] d x
$$

Area Between Two Curves

Example:

Find the area below $f(x)$ and above $g(x)$
$R=\int_{0}^{2}[f(x)-g(x)] d x$ where
$f(x)=x^{2}$ and
$g(x)=x-2$
$R=$

Economic Application: Consumer surplus

Definition1:

Consumer surplus is the economic gain accruing to consumers when they engage in trade. The gain is the difference between the price they are willing to pay and the actual price.
At the equilibrium level (demand and supply are equal), the consumer surplus is the difference between what consumers are willing to pay and their actual expenditure: It therefore represents the total amount saved by consumers who were willing to pay more than $p *$ per unit.

Economic Application: Consumer surplus

Definition2:

Suppose that $p=D(q)$ describes the demand function for a commodity. Then the consumer surplus is defined for the point (p^{*}, q^{*}) as:

$$
\text { Consumer surplus }=\int_{0}^{q^{*}} D(q) \cdot d q-p^{*} q^{*}
$$

$p^{*} q^{*}$ is the actual expenditure if the goods are sold at the equilibrium price.
Graphically, the consumer surplus is the area between demand curve and the horiz

Economic Application: Consumer surplus

Example:

The demand and supply functions for a given product are given by $D(q)=60-\frac{q^{2}}{10}$ and $\mathrm{S}(q)=30+\frac{q^{2}}{5}$
Find the consumer surplus at the equilibrium price.

Solution:

We first need to find the equilibrium price and quantity

$$
\begin{aligned}
& D(q)=S(q) 60-\frac{q^{2}}{10}=30+\frac{q^{2}}{5} q^{*}=10 \\
& \begin{aligned}
\Longleftrightarrow p^{*}=D\left(q^{*}\right)=50
\end{aligned} \\
& \begin{aligned}
\Longleftrightarrow q^{*}
\end{aligned} \\
& \\
& =\int_{0}^{10} D(q) \cdot d q-500=66.67
\end{aligned}
$$

Time to Review !

1. By reversing the process of differentiation, we find the original function from the derivative. We call this operation integration or anti-differentiation.
2. The indefinite integral of a function is a function defined

$$
\int f(x) d x=F(x)+c
$$

3. If f is a continuous function, the definite integral of f from a to b is defined $a s:$

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

4. Consumer surplus $=\int_{0}^{q^{*}} D(q) \cdot d q-p^{*} q^{*}$

Where, $\mathrm{p}^{*} \mathrm{q}^{*}$ is the actual expenditure if the goods are sold at the equilibrium price.

we will see in the next unit

\checkmark Function of several variables
\checkmark Partial differentiation
\checkmark Maximum and minimum of functions of several variables

UNIVERSITY OF TLEMCEN
Economic and Management Sciences

جامعة أبو بكر بلقايد -تلمسان و المان
كلية العلوم الاقتصـادبة و التصيير و العلوم التجارية

Course
Unit course

Number Unit
4

Unit Subject
Functions of several variables

we will see in this unit

\checkmark Function of several variables
\checkmark Partial differentiation
\checkmark Maximum and minimum of function of several variables

LEARNING OUTCOMES

At the end of this unit, you should be able to:

1. Understand what is meant by "Functions of several variables".
2. Calculate partial derivatives.
3. Determining the relative extrema of the functions of several variables.

Functions of several variables

Introduction:

Suppose a firm that produces two products. It produces x units for the first product at a profit of $\$ 4$ per unit and y units for the second product at a profit of $\$ 6$ per unit. Then, the total profit P of this firm is a function of the two variables x and y, and it is given by:

$$
P(x, y)=4 x+6 y
$$

This function assigns to the input pair (x, y) a unique output number, $4 x+6 y$

For example,

$$
P(25,10)=4(25)+6(10)=\$ 160
$$

This result means that by selling 25 units of the first product and 10 units of the second, the profit of the firm will be $\$ 160$.

Definition1:

A function of two variables assigns to each input pair, (x, y), exactly one output number, $f(x, y)$.

Definition2:

A function of Several Variables is a function that has more than one independent variable.

Example:The total cost to a company of producing its goods is given by: $C(x, y, z, w)=4 x^{2}+5 y+z-\ln (w+1)$
Where, x dollars are spent for labor, y dollars for raw materials, z dollars for advertising and w dollars for machinery. This is a function of four variables.

Compute $C(3,2,0,10)$?

$$
C(3,2,0,10)=4\left(3^{2}\right)+5(2)+0-\ln (10+1)=\$ 43.6
$$

In this unit, we treat the case of two variables only.

Partial derivatives

Definition:

Suppose, we have a function $f(x, y)$, which depends on two variables x and y, where x and y are independent of each other. Then we say that the function f partially depends on x and y.

Now, if we calculate the derivative of f, then that derivative is known as the partial derivative of f. If we differentiate the function f with respect to x, then take y as a constant and if we differentiate f with respect to y, then take x as a constant.

Partial derivatives Formula

If $f(x, y)$ is a function which partially depends on x and y and if we differentiate f with respect to x and y, then the derivatives are called the partial derivatives of f.

- The formula for partial derivative of f with respect to x taking y as a constant is given by:

$$
f_{x}=\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

- The formula for partial derivative of f with respect to y taking x as a constant is given by:

$$
f_{y}=\frac{\partial f}{\partial y}=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

To get partial derivatives....

- To get f_{x} assume y is a constant and differentiate with respect to x

Example

$$
\begin{gathered}
f(x, y)=x y^{2}+x^{2} y \\
f_{x}(x, y)=(1) y^{2}+(2 x) y=y^{2}+2 x y
\end{gathered}
$$

- To get f_{y} assume x is a constant and differentiate with respect to y

Example

$$
\begin{gathered}
f(x, y)=x y^{2}+x^{2} y \\
f_{y}(x, y)=x(2 y)+x^{2}(1)=2 x y+x^{2}
\end{gathered}
$$

Example: Compute the partial derivatives of the following functions

$$
1 / f(x, y)=2 x+3 y-4
$$

$$
f(x, y)=3 x^{2} y-2+y^{3}
$$

$$
f(x, y)=3 x^{2} y+x \ln y
$$

$$
3 /
$$

Second-Order Partial Derivatives

- The partial derivative of a partial derivative is called a second-order partial derivative.
- Four second order partial derivatives can be deduced:

$$
\begin{array}{ll}
f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(f_{x}\right) & f_{x y}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(f_{x}\right) \\
f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(f_{y}\right) & f_{y x}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(f_{y}\right)
\end{array}
$$

Example1: Find the second-order partial derivatives of the function

$$
\begin{array}{r}
f(x, y)=3 x^{2} y+x \ln y \\
f_{x}=6 x y+\ln y \quad f_{y}=3 x^{2}+x\left(\frac{1}{y}\right) \\
f_{x x}=6 y \quad f_{y y}=-\frac{x}{y^{2}} \quad f_{x y}=6 x+\frac{1}{y} \quad f_{y x}=6 x+\frac{1}{y}
\end{array}
$$

Example2:

Find the second-order partial derivatives of the function

$$
\begin{array}{rr}
f(x, y)=3 x-2 y^{2} \\
f_{x}=3 \\
f_{x x}=0 \quad f_{y y}=-4 & f_{x y}=0 \quad f_{y x}=0
\end{array}
$$

Example: Compute the second order partial derivatives of the following functions

$$
\begin{aligned}
& f(x, y)=2 x-x^{2}-y^{2} \\
& f(x, y)=3 x^{2} y-2+y^{3} \\
& f(x, y)=3 x^{2} y+x \ln y
\end{aligned}
$$

Maximum and minimum of functions of several variables

Definition:

Let f be a function defined on a region R containing

$$
(a, b)
$$

- $\quad f(a, b)$ is a relative maximum of f if $f(x, y) \leq f(a, b)$ for all (x, y) sufficiently close to (a, b).
- $f(a, b)$ is a relative minimum of f if $f(x, y) \geq f(a, b)$ for all (x, y) sufficiently close to (a, b).

Critical Point of \boldsymbol{f}

Definition:

A point (a, b) in the domain of f is a critical point of a function $f(x, y)$ if :

$$
\frac{\partial f}{\partial x}(a, b)=0 \text { and } \frac{\partial f}{\partial y}(a, b)=0
$$

If $f(x, y)$ has a relative extreme value, then it must occur at a critical point.

Example1: Determine critical point of the of the function

$$
\begin{gathered}
f(x, y)=2 x-x^{2}-y^{2} \\
f_{x}=\frac{\partial f}{\partial x}(x, y)=2-2 x=0 \text { and } f_{y}=\frac{\partial f}{\partial y}(x, y)=-2 y=0 \\
\left(\begin{array}{l}
2-2 x=0 \\
-2 y=0
\end{array} \Rightarrow\right)\binom{x=1}{y=0}
\end{gathered}
$$

The point $\mathrm{M}=(1,0)$ is a critical point.

Example2: Determine critical point of the of the function

$$
f(x, y)=x^{2}-2 x y+3 y^{2}+4 x-16 y+22
$$

UNIVERSITY OF TLEMCEN
Economic and Management Sciences

كلية العلوم الاقتصـادبة و التصيير و العلوم التجارية

Course
Unit course

Number Unit
5

Unit Subject
Sequences \& Series

we will see in this unit

\checkmark The "arithmetic sequences" and "arithmetic series".
\checkmark The "Geometric sequences" and "Geometric series".
\checkmark Solve some questions for real world situations in order to solve problems, especially economic and financial.

LEARNING OUTCOMES

At the end of this unit, you should be able to:

1. Understand what is meant by "Arithmetic sequences" and "Arithmetic series"
2. Understand what is meant by "Geometric sequences" and "Geometric series".
3. Solve some questions for real world situations in order to solve problems, especially economic and financial.

Arithmetic sequences and series

The can pyramid...

Q1/ How many cans are there on the bottom row in this pyramid?

Q2/ How many cans are there in this pyramid?

1/ There are 3 cans on the bottom row
2/ There are 6=3+2+1 cans in this pyramid
!!! How many cans are there in a pyramid with 100 cans on the bottom row?

Arithmetic sequences and series

Solution:

We have $S=100+99+98+\ldots+3+2+1$ cans in a pyramid with 100 cans on the bottom row.

$$
\begin{aligned}
& S=100+99+98+\ldots+3+2+1 \\
& S=1+2+3+\ldots+98+99+100 \\
& 2 S=101+101+101
\end{aligned}+\ldots+101+101+101
$$

$$
S=\frac{100 \times 101}{2}=5050
$$

Then

Arithmetic sequences

Definition1: An Arithmetic Sequence is a sequence whose consecutive terms have a common difference, r.

- In the pyramid can example the common difference $r=1$.
Example 1:
$\begin{array}{llllllllllll}0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & ?\end{array} ?$
\rightarrow To find the common difference (r), just subtract any term from the term that follows it. Then
The next numbers are 20, 22 and 24 because the common difference is $r=2$.
!!! Question:
What is the twentieth number?

Arithmetic sequences

Example 1 (Continued)

If We set $u_{1}=0, u_{2}=2, u_{3}=4, u_{4}=6, u_{5}=8$, and so on. Then the twentieth number correspond to U_{20}
First Term: $u_{1}=0$
Second Term $u_{2}=u_{1}+r=0+2=2$
Third Term $u_{3}=u_{2}+r=u_{1}+2 r=0+2 \times 2=4$
Fourth Term $u_{4}=u_{3}+r=u_{1}+3 r=0+3 \times 2=6$
Fifth Termu $_{5}=u_{4}+r=u_{1}+4 r=0+4 \times 2=8$
And so on:

$$
u_{20}=u_{19}+r=u_{1}+19 r=0+19 \times 2=38
$$

Formula for the $\mathrm{n}^{\text {th }}$ term of an ARITHMETIC sequence

Given the following arithmetic sequence: $100,120,140,160, \ldots$. Find the 10th term

$$
u_{1}=100 \quad r=20 \quad u_{10}=u_{1}+9 r=100+9 \times 20=280
$$

Arithmetic sequences

Example3:

Which of the following sequences are arithmetic? Identify the common difference, and calculate u_{12} for arithmetic sequences.

$$
\begin{aligned}
& -3,-1,1,3,5,7,9, \ldots \\
& 84,80,74,66,56,44, \ldots \\
& 15.5,14,12.5,11,9.5,8, \ldots \\
& -50,-44,-38,-32,-26, \ldots
\end{aligned}
$$

Aerithmetic series

Definition:

An Arithmetic series is the sum of the terms in an arithmetic Sequence.

If we consider the following arithmetic sequence
$u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, \ldots, u_{n}$

$$
S_{n}=\sum_{i=1}^{n} u_{i}
$$

then
We can write the formula of arithmetic series as:

Arithmetic series

Example 1:
Find the 20th term and the sum of 20 first terms of the sequence $2,5,8,11,14,17, \ldots$

Solution:

This is an arithmetic sequence with

Arithmetic series

Example 2:

Find the sum of the terms of this arithmetic sequence.

$$
151+147+143+139+\ldots . .+(-5)
$$

Solution:

Geometric sequences and series

Example:

What if your interest check started at \$100 a week and doubled every week. What would your interest after three weeks? What would your interest after nine weeks? What would your total interest at the end of tenth week?

Solution:

* Starting \$100.
* After one week

$$
\begin{aligned}
& 2 \times \$ 100=\$ 200 \\
& 2 \times \$ 200=\$ 400=2^{2} \times 100 \\
& 2 \times \$ 400=\$ 800=2^{3} \times 100
\end{aligned}
$$

* After two weeks :
* After three weeks :
$\frac{\mid \text { Start } 11 \text { week | } 2 \text { weeks } \mid 3 \text { weeks } \mid}{100 \quad 200 \quad 400 \quad 800}$
!! After 3 weeks I would have $\$ 800$

Geometric sequences and series

Solution: continued

- Starting \$100.
- After one week :

$$
\begin{aligned}
& 2 \times \$ 100=\$ 200=2^{2} \times 100 \\
& 2 \times \$ 200=\$ 400=2^{2} \times 100
\end{aligned}
$$

- Aftertwoweeks :
- Afterthree weeks : $2 \times \$ 400=\$ 800=2^{3} \times 100$

And so on

- Afternineweeks : $2^{9} \times 100=\$ 51200$
!!! After 9 weeks I would have $\$ 51200$
- The total interest is:

$$
\begin{aligned}
& S=100+200+400+800+\ldots .+51200 \\
& S=100\left(1+2+2^{2}+2^{3}+\ldots .+2^{9}\right)
\end{aligned}
$$

Geometric sequences and series

Solution: continued

$$
\begin{aligned}
& S=100\left(1+22^{2}+2^{2}+2^{8}+\ldots+2^{8}\right) \\
& 2 S=100\left(22^{2}+2^{2}+2^{8}+2^{4}+\ldots,+2^{10}\right)
\end{aligned}
$$

$$
S-2 S=100\left(1-2^{10}\right)
$$

$$
(1-2) S=100\left(1-2^{10}\right)
$$

$$
S=100 \frac{\left(1-2^{10}\right)}{(1-2)}=102300
$$

!!! At the end of tenth week I would have $\$ 102300$

Geometric sequences

Definition1:

A Geometric Sequence is a sequence whose consecutive terms have a commonratio, q.

Example 1:

\rightarrow In interest example the common ratio $q=2$. suppose we have the following sequence

$$
141664 ? ?
$$

\rightarrow To find the common ratio (q), just divide any term by the previous term. Then
The next numbers are 256 and 1024 because the common ratio is $q=4$. !!! Question:
What is the tenth number?

Geometric sequences

If We set $u_{1}=1, u_{2}=4, u_{3}=16, u_{4}=64$, and so on. Then the tenth number correspond to u_{10}

First Term: $\quad u_{1}=1$
Second Term: $u_{2}=u_{1} \times q=1 \times 4=4$
Third Term: $u_{3}=u_{(2)} \times q=u_{1} \times q^{2}=1 \times 4^{2}=16$
Fourth Term: $u_{4}=u_{3} \times q=\left(u_{1} \times q^{3}=1 \times 4^{3}=64\right.$
Fifth Term: $u_{5}=u_{(4)} \times q=\left(u_{1} \times q^{4}=1 \times 4^{4}=256\right.$ And so on:

$$
u_{10}=u_{9} \times q=4_{1} \times q^{9}=1 \times 4^{9}=262144
$$

Formula for the $n^{\text {th }}$ term of a GEOMETRIC sequence

Example 2:

Given the following geometric sequence:
$5,15,45, \ldots$ Find the 10th term.

Geometric sequences

Example3:

Which of the following sequences are geometric? Identify the common ratio, and calculate u_{5} for geometric sequences:

```
* 2,6,18,\ldots..
```

* $5,15,25,45, \ldots$
* $1,5,25,125, \ldots$

Geometric series

Definition:

A Geometric Series is the sum of the terms in a geometric Sequence.
If we consider the following geometric sequence

$$
u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, \ldots, u_{n} \quad S_{n}=\sum_{i=1}^{n} u_{i}
$$

We can write the formula of geometric series as:

Geometric sequences and series

Example:

1/ Find the common ratio of the following sequence $2,-4,8,-16,32$, ...
2/ Find the ninth and tenth term.
3/ Find S_{10}.
Solution:

Arithmetic and geometric sequences and series

Time to Review!

Arithmetic sequences and series	Geometric sequences and series
$u_{n}-u_{n-1}=r$	$\frac{u_{n}}{u_{n-1}}=q$
$u_{n}=u_{1}+(n-1) \times r$	$u_{n}=u_{1} \times q^{n-1}$
$S_{n}=\frac{n\left(u_{1}+u_{n}\right)}{2}$	$S_{n}=u_{1} \times\left[\frac{1-q^{n}}{1-q}\right]$
That's All!	

Practical Examples

Example 1: (Arithmetic sequence)

Abdul Aziz makes a monthly saving plan for a period of two years in a bank that doesn' \dagger give interes \dagger for saving accounts (compliant with Shariah). In the first month he deposits 1000 SAR, in the second month he deposits 1200 SAR and the third month 1400 SAR and so on.

1. What is the amount that he will deposit in the fifth month, in the 24th month?
2. What is the total amount that he will obtain at the end of the second year?

Practical Examples

Solution of Example1
1.
2.

Practical Examples

Example 2: (Geometric sequence)

Abdul Aziz makes a monthly saving plan for a period of one year in a bank that doesn't give interest for saving accounts (compliant with Shariah). In the first month he deposits 5 SAR, in the second month he deposits 10 SAR and the third month 20 SAR and so on.

1. What is the amount that he will deposit in the fourth month, in the eighth month.
2. What is the total amount that he will obtain at the end of the period.

Practical Examples
 Solution of Example2

1.
2.

we will see in the next unit

\checkmark The relationship between time and money.
\checkmark The simple interest rate and the interest amount
\checkmark The present value of one future cash flow
\checkmark The future value of an amount borrowed or invested.
\checkmark The relationship between Real Interest Rate,
Nominal Interest Rate and Inflation.

Course
Unit course

Number Unit
6

Unit Subject

Financial Mathematics
FIN 118

Time Value of Money
Simple Interest

we will see in this unit

\checkmark The relationship between time and money.
\checkmark The simple interest rate and the interest amount
\checkmark The present value of one future cash flow
\checkmark The future value of an amount borrowed or invested.
\checkmark The relationship between Real Interest Rate,
Nominal Interest Rate and Inflation.

LEARNING OUTCOMES

At the end of this unit, you should be able to: Understand simple interest including. 1 accumulating, discounting and making comparisons using the effective interest rate.
2.Identify variables fundamental to solving interest problems.
3.Solve problems including future and present value.
4.Distinguish between nominal and effective interest rates.

Time value of Money

- The time value of money is the relationship between time and money.
- Receiving 1 DA today is worth more than 1 DA in the future. This is due to opportunity costs.
- TIME allows you the opportunity to postpone consumption and earn INTEREST

Time value of Money

If we can measure this opportunity cost, we can:

* Translate 1 DA today into its equivalent in the future : operation of capitalization(الرسملة)

* Translate 1 DA in the future into its equivalent today: Discounted operation (الخصم أو الحسم)

Time value of Money

Borrower owes (Debt+interest) to

Financial institution
Borrowers
المقترضون
Lends the Principal

Time value of Money Fundamental Concepts

- Principal: The amount borrowed or invested.
- Interest rate: A percentage of the outstanding principle.
- Time: The number of years or fractional portion of a year that principal is outstanding.
- A present value is the discounted value of one or more future cash flows.
- A future value is the compounded value of a present value.
- The discount factor is the present value of one riyal invested in the future.
- The compounding factor is the future value of one riyal invested today.

Time value of Money

The Simple Interest

Definition1: An interest amount in each period is computed based on a principal sum in the period.

Interest $=$ Principal \times Interest Rate \times number of periods
Definition2. $I=P V \times i \times n$
Definition2: The future value is the sum of present value and the interest amount.

Future Value $=$ Present Value $\boldsymbol{+}$ Interest

$$
\begin{gathered}
F V_{n}=P V+I \\
F V_{n}=P V(1+i \times n)
\end{gathered}
$$

Formulas of simple interest method

$i=$
$n=$
$P V=$

$$
F V_{n}=P V(1+i \times n)
$$

$$
P V=
$$

The Simple Interest

More Examples

Example1:

How much money would you pay in interest if you borrowed $\$ 1600$ for 1 year at 16% simple interest per annum?

Solution:

The Simple Interest

More Examples

Example2:

How much money would you pay in interest if you borrowed $\$ 16000$ for 6 months at 12% simple interest per annum?
Solution:

The Simple Interest

More Examples

Example3:
How much money would you pay in interest if you borrowed $\$ 16000$ for 9 months at 5\% quarterly simple interest?
Solution:

The Simple Interest

More Examples

Example4:
You take a 40000 DA loan for 127 days. Annual simple interest rate is 12%. Calculate:
a) The interest
b) The amount that he must pay on the date due?

Solution:
a)
b)

The Simple Interest

More Examples

Example5:

When invested at an annual interest rate of 6% an account earned $\$ 180$ of simple interest in one year. How much money was originally invested in account?
Solution:

The Simple Interest

More Examples

Example6:

If an investment of \$7000 accumulate \$910 of interest in the account after 1 year, what was the annual simple interest rate on the savings account?
Solution:

The Simple Interest More Examples

Example7:
You put $\$ 600$ today in an account that earns an annual simple interest rate of 8%. How many years will it take for this single investment of $\$ 600$ to have a future value of \$900?

Solution:

The Simple Interest

More Examples

Example8:

An investment earns 4.5% annual simple interest rate. If $\$ 2400$ is invested, what is the total amount that can be withdrawn when the account is closed out after 2 months?
Solution:

Nominal Interest Rates vs. Real Interest Rates

State1: Suppose we buy a 1 year bond for face value that pays 6% at the end of the year. We pay $\$ 100$ at the beginning of the year and get $\$ 106$ at the end of the year. Thus the bond pays an interest rate of 6%. This 6% is the nominal interest rate, as we have not accounted for inflation. Whenever people speak of the interest rate they're talking about the nominal interest rate, unless they state otherwise.

Nominal Interest Rates vs. Real Interest Rates

State2: Now suppose the inflation rate is 3% for that year. We can buy a basket of goods today and it will cost $\$ 100$, or we can buy that basket next year and it will cost $\$ 103$. If we buy the bond with a 6% nominal interest rate for $\$ 100$, sell it after a year and get $\$ 106$, buy a basket of goods for $\$ 103$, we will have $\$ 3$ left over. So after factoring in inflation, our $\$ 100$ bond will earn us $\$ 3$ in income; a real interest rate of 3%. The relationship between the nominal interest rate, inflation, and the real interest rate is described by the Fisher Equation:

It's time to review

Simple Interest	Compound interest
$\boldsymbol{I}=P V \times i \times n$	see Unit 9
$F V_{n}=P V+I$	see Unit 9
$F V_{n}=P V(1+i \times n)$	see Unit 9
More than one compounding periods per year	
See Unit 9	

Real Interest Rate $=$ Nominal Interest Rate $\boldsymbol{-}$ Inflation

we will see in the next unit

\checkmark The compound interest rate and the interest amount
\checkmark How to Calculate the future value of a single sum of money invested today for several periods.
\checkmark How to Calculate the interest rate or the number of periods or the principal that achieve a fixed future value.

UNIVERSITY OF TLEMCEN
Economic and Management Sciences

جامعة أبو بكر بلقابد -تلمسان الت الت
كلية العلوم الاقتصـادبة و التصيير و العلوم التجارية

Course
Unit course

Number Unit
7

Unit Subject

Financial Mathematics
FIN 118

Compound Interest
 Non annual Compound Interest
 Continuous Compound Interest

!!! remember what we saw last time

\checkmark The relationship between time and money.
\checkmark The simple interest rate and the interest amount
\checkmark The present value of one future cash flow
\checkmark The future value of an amount borrowed or invested.
\checkmark The relationship between Real Interest Rate,
Nominal Interest Rate and Inflation.

we will see in this unit

\checkmark The compound interest rate and the interest amount
\checkmark How to Calculate the future value of a single sum of money invested today for several periods.
\checkmark How to Calculate the interest rate or the number of periods or the principal that achieve a fixed future value.

LEARNING OUTCOMES

At the end of this unit, you should be able to:

1. Understand compound interest, including accumulating, discounting and making comparisons using the effective interest rate.
2. Distinguish between compound interest.
3. Identify variables fundamental to solving interest problems.
4. Solve problems including future and present value.

The Compound Interest

Definition1: In each subsequent period, the interest amount computed is used to form a new principal sum, which is used to compute the next interest due.

* As we said, Compound Interest uses the Sum of Principal \& Interest as a base on which to calculate new Interest and new Principal!

$$
\begin{aligned}
F V_{1} & =P V\left(1+i_{1}\right) & & \text { one period } \\
F V_{2} & =F \mathrm{~V}_{1}\left(1+i_{2}\right)=P V\left(1+i_{1}\right)\left(1+i_{2}\right) & & \text { two periods } \\
F V_{3} & =F \mathrm{~V}_{2}\left(1+i_{3}\right)=P V\left(1+i_{1}\right)\left(1+i_{2}\right)\left(1+i_{3}\right) & & \text { three periods } \\
& \ldots & & \\
F V_{n} & =P V\left(1+i_{1}\right)\left(1+i_{2}\right)\left(1+i_{3}\right) \cdots\left(1+i_{n}\right) & & \text { n periods }
\end{aligned}
$$

The Compound Interest

Definition2: If the interest rate is constant over differientiperipas wehaives i and
$\mathrm{FV}_{\mathrm{n}}=$ Principal $\times\left(1+\right.$ Interest Rate) ${ }^{\text {number of Periods }}$
$F V_{n}=P V(1+i)^{n}$
$P V=$
$i=$
$n=$

$$
F V_{n}=P V+I
$$

!!! Remember

The Compound Interest

Property1:

The compound interest rate is a geometric sequences but the simple interest is an arithmetic sequences.

Simple interest: Linear growth $\mathrm{i}=0.15$
Compound interest: Geometric growth $\mathrm{i}=0.15$

The Compound Interest

More Examples

Example1:
How much money would you pay in interest if you borrowed $\$ 1600$ for 3 years at 16% compound interest per annum?
Solution:

The Compound Interest

More Examples

Example2:

What is the present value of $\$ 150000$ to be received 5 years from today if the discount rate (annual compounded interest) is 10% ?
Solution:

The Compound Interest

More Examples

Example3:
Assume that the initial amount to invest is PV $=\$ 100$ and the interest rate is constant over time. What is the compound interest rate in order to have $\$ 150$ after 5 years?
Solution:

The Compound Interest

More Examples

Example4:
Find the number of periods to double your investment at 6\% compound interest per annum . Solution:

Question 1 ? How to calculate the FV if we have more than one compounding periods per year?

Response:

The table shows some common compounding periods and how many times per year interest is paid for them.

Compounding Periods	Times per year (\dagger)
Annually	1
Semi-annually	2
Quarterly	4
Monthly	12

$$
F V_{n, t}=P V\left(1+\frac{i}{t}\right)^{n \times t}
$$

And

If $t=1$ we retrieve the old formula

Non annual Compound Interest

Example1:

You invested $\$ 1800$ in a savings account that pays 4.5% interest p.a. compounded semi-annually. Find the value of the investment in 12 years.

Solution:

Non annual Compound Interest

Example2:

You invested $\$ 3700$ in a savings account that pays 2.5% interest p.a. compounded quarterly. Find the value of the investment in 10 years. Solution:

Non annual Compound Interest

Example3:

You invested \$1700 in a savings account that pays 1.5% interest p.a. compounded monthly. Find the value of the investment in 15 years.
Solution:

Non annual Compound Interest

Example4:

You expect to need \$1500 in 3 years. Your bank offers 4% interest p.a. compounded semiannually. How much money must you put in the bank today (PV) to reach your goal in 3 years?
Solution:

Non annual Compound Interest

Example5:

Suppose a bank quotes nominal annual interest rates on five-years of:

* 6.6% compounded annually,
* 6.5% p.a. compounded semi-annually, and
* 6.4% p.a. compounded monthly.

Which rate should an investor choose for an investment of $\$ 10000$?

Solution:

Non annual Compound Interest

Solution : continued

First proposition:

Second proposition:

Third proposition:

Question 2 ? What would happen to our money if we compounded a really large number of times?

Response:

We would have to compound not just every hour, or every minute or every second but for every millisecond. We have:

$$
F V_{n, t}=P V\left(1+\frac{i}{t}\right)^{n \times t} \xrightarrow{t \rightarrow \infty} \quad P V \times e^{n \times i}
$$

* Then with Continuous compounding interest we have:

$$
F V_{n, \infty}=P V \times e^{n \times i}
$$

Continuous Compound Interest

Example1:

If you invest $\$ 1000$ at an annual interest rate of 5% p.a. compounded continuously, calculate the final amount you will have in the account after five years.

Solution:

Continuous Compound Interest

Example2:

How long will it take an investment of \$10000 to grow to $\$ 15000$ if it is invested at 9% p.a. compounded continuously?

Solution:

Continuous Compound Interest

Example3:

What is the interest rate compounded continuously of an investment of $\$ 1000$ to grow to $\$ 2000$ if it is invested for 7 years?
Solution:

Compound Interest

Example4:

What amount will an account have after 5 years if $\$ 100$ is invested at an annual nominal rate of 8% compounded annually? Semiannually? continuously?

Solution:

Compounded annually:

Compounded semi-annually:

Compounded continuously:

Effective Interest Rate

- When analyzing a loan or an investment, it can be difficult to get a clear picture of the loan's true cost or the investment's true yield.
- The effective interest rate attempts to describe the full cost of borrowing. It takes into account the effect of compounding interest, which is left out of the nominal or "stated" interest rate.
- For example, a loan with 10% interest compounded monthly will actually carry an interest rate higher than 10%, because more interest is accumulated each month.
- The effective interest rate calculation does not take into account one-time fees like loan origination fees. These fees are considered, however, in the calculation of the annual percentage rate.

Effective Interest Rate

- The compounding periods will generally be monthly, quarterly, annually, or continuously. This refers to how often the interest is applied.
- The effective interest rate is calculated through a simple formula:

$$
r=\left(1+\frac{i}{t}\right)^{t}-1
$$

r : the effective interest rate,
i i: the stated interest rate,
t : the number of compounding periods per year.

Effective Interest Rate

Example 1:

Find the effective annual rate for a stated rate of 7.5% per year compounded quarterly.
Solution:

Effective Interest Rate

Example 2:

Determine the effective rate on the basis of the compounding period for each interest rate.
a) 9% per year, compounded yearly
b) 6% per year, compounded quarterly
c) 8% per year, compounded monthly
d) 5% per year, compounded weekly

Solution:

Nominal interest rate (i)	Compounding period	t	Effective interest rate (\mathbf{r})
9\% per year	Year		
6\% per year	Quarter		
8\% per year	Month		
5\% per year	Week		

It's time to review

Simple Interest	Compound interest
$I=P V \times i \times n$	$F V_{n}=P V+I$
$F V_{n}=P V+I$	$F V_{n}=P V(1+i)^{n}$
$F V_{n}=P V(1+i \times n)$	
$F V_{n, t}=P V\left(1+\frac{i}{t}\right)^{n \times t}$	$F V_{n}=P V \times e^{n \times i}$
More than one compounding periods per year	

Effective Interest Rate $=r=\left(1+\frac{i}{t}\right)^{t}-1$
Real Interest Rate $=$ Nominal Interest Rate $\boldsymbol{-}$ Inflation
we will see in the next unit
\checkmark Meant of simple Annuity
\checkmark Simple Annuity: Ordinary Annuity,
Annuity Due (unit8)

UNIVERSITY OF TLEMCEN
Economic and Management Sciences

كلية العلوم الاقتصـادية والثور بلقيبير والتلمسان التجارية

Financial Mathematics

Unit course
FIN 118
Number Unit
8

Unit Subject
 Ordinary Annuity
 Annuity due

we will see in this unit

\checkmark Meant of simple Annuity
\checkmark Ordinary Annuity
\checkmark Annuity Due
\checkmark How to Calculate present and future values of each type of annuity.

LEARNING OUTCOMES

At the end of this unit, you should be able to:

1. Distinguish between an ordinary annuity and an annuity due.
2. Calculate present and future values of each type of annuity.
3. Apply knowledge of annuities to solve a range of problems, including problems involving principal-and-interest loan contracts.

Introduction

In unit 7, we have seen that a single sum of money invested today for several periods will produce a higher future sum due to compounding effect. In this unit we attempt to see that the same phenomenon will occur for multiple stream of cash flow.
A multiple stream of cash flow that is made in an equal size and at a regular interval is known as simple annuity.

It exists four different forms for Simple annuity: Ordinary Annuity, Annuity Due (unit8), Deferred Annuity, and Perpetuity.

Ordinary Annuity

Definition: Ordinary Annuity is a series of equal cash payments or deposits made at the end of each compounding period.

Examples :

i/ When a particular individual buy a bond, he will receive equal semi-annual coupon interest payments over the life of the bond.
ii/ When a particular individual borrow money to buy for example a house or a car, he will pay a stream of equal payments at the end of each period of coverage.

Ordinary Annuity

Question: what is value of the sum of all payments now and at the end of period?

Future Value Annuity $\mathrm{FVA}_{\mathrm{n}}$

The future value annuity of an ordinary annuity is the sum of all regular equal payments and the compounded interest accumulated at the end of last period. It is determined as follow:

$$
F V A_{n}=P M T\left[\frac{(1+i)^{n}-1}{i}\right]
$$

* PMT: annuity payment deposited or received at the end of each period,
* i : interest rate per period,
* n : number of payments.

Future Value Annuity FVA ${ }_{n}$

$$
\begin{aligned}
& F V A_{n}=P M T+P M T(1+i)+P M T(1+i)^{2}+\cdots+P M T(1+i)^{n-1} \\
& \quad=P M T \times\left[1+(1+i)+(1+i)^{2}+\ldots+(1+i)^{n-1}\right]
\end{aligned}
$$

$$
F V A_{n}=P M T\left[\frac{(1+i)^{n}-1}{i}\right]
$$

Future Value Annuity
 More Examples

Example 1:

Suppose you plan to deposit $\$ 1000$ annually into an account at the end of each of the next 7 years. If the account pays 12% annually, what is the value of the account at the end of 7 years?
Solution:

Future Value Annuity
 Example 2

What is the future value of $\$ 5000$ invested at the end of each year for 10 years if money earns 6% per annum?

Solution

Present Value Annuity PVA ${ }_{n}$

The present value annuity of an ordinary annuity is the sum of all regular equal payments discounted at a certain interest rate in at the end of each period. It is determined as follow:

$$
P V A_{n}=P M T\left[\frac{1-(1+i)^{-n}}{i}\right]
$$

PMT: annuity payment deposited or received at the end of each period,
i : interest rate per period,
n : number of payments.

Present Value Annuity PVA $_{n}$

$$
\begin{aligned}
P V A_{n} & =\frac{P M T}{1+i}+\frac{P M T}{(1+i)^{2}}+\cdots+\frac{P M T}{(1+i)^{n}} \\
& =\frac{P M T}{1+i} \times\left[1+\frac{1}{1+i}+\frac{1}{(1+i)^{2}}+\ldots+\frac{1}{(1+i)^{n-1}}\right]= \\
& =P M T(1+i)^{-1} \times\left[1+(1+i)^{-1}+(1+i)^{-2}+\ldots+(1+i)^{-(n-1)}\right] \\
& =P M T(1+i)^{-1}\left[\frac{1-(1+i)^{-n}}{1-(1+i)^{-1}}\right]=P M T\left[\frac{1-(1+i)^{-n}}{i}\right]
\end{aligned}
$$

Present Value Annuity
 More Examples

Example 1:
You plan to withdraw $\$ 1000$ annually from an account at the end of each of the next 7 years. If the account pays 12% annually, what must you deposit in the account today? Solution:

Present Value Annuity
 More Examples

Example 2:
What is the present value of $\$ 5000$ that will be invested at the end of each year for 10 years if money earns 6\% per annum?

Annuity Due

Definition: Annuity Due is a series of equal cash payments or deposits made at the beginning of each compounding period.

Examples :

i/ When a particular individual make an apartment lease contract over a period of several years, he must paid at the beginning of each year an annual rent.
ii/ When a particular individual buy a car he must paid at the beginning of each year an annual insurance premium.

Annuity Due

Question: what is value of the sum of all payments now and at the end of period?

Future Value Annuity $\mathrm{FVA}_{\mathrm{n}}$

The future value annuity of an annuity due is the sum of all regular equal payments at the beginning of each period and the compounded interest accumulated at the end of last period. It is determined as follow:

$$
F V A_{n}=P M T\left[\frac{(1+i)^{n}-1}{i}\right](1+i)
$$

* PMT: annuity payment deposited or received at the beginning of each period,
* i : interest rate per period,
* n : number of payments.

Future Value Annuity FVA ${ }_{n}$

Proof :

$$
\begin{aligned}
F V A_{n} & =P M T(1+i)+P M T(1+i)^{2}+P M T(1+i)^{3} \cdots+P M T(1+i)^{n} \\
& =P M T(1+i) \times\left[1+(1+i)+(1+i)^{2}+\ldots+(1+i)^{n-1}\right]
\end{aligned}
$$

$$
F V A_{n}=P M T(1+i)\left[\frac{(1+i)^{n}-1}{i}\right]=P M T\left[\frac{(1+i)^{n}-1}{i}\right](1+i)
$$

More Examples

Future Value Annuity

Example 1:

Suppose you plan to deposit $\$ 1000$ annually into an account at the beginning of each of the next 7 years. If the account pays 12% annually, what is the value of the account at the end of 7 years?
Solution:

Future Value Annuity

More Examples

Example 2:

What is the future value of $\$ 5000$ invested at the beginning of each year for 10 years if money earns 6\% per annum?

Present Value Annuity PVA $_{n}$

The present value annuity of an annuity due is the sum of all regular equal payments discounted at a certain interest rate in at the beginning of each period. It is determined as follow:

$$
P V A_{n}=P M T\left[\frac{1-(1+i)^{-n}}{i}\right](1+i)
$$

* PMT: annuity payment deposited or received at the beginning of each period,
* i : interest rate per period,
* n : number of payments.

Present Value Annuity PVA ${ }_{n}$

Proof :

Present Value Annuity

More Examples

Example 1:
You plan to withdraw $\$ 1000$ annually from an account at the beginning of each of the next 7 years. If the account pays 12% annually, what must you deposit in the account today? Solution:

Present Value Annuity

More Examples

Example 2:

What is the present value of $\$ 5000$ that will be invested at the beginning of each year for 10 years if money earns 6\% per annum?
Solution:

Formulas

That's All for 50\% of simple Annuity !

we will see in the next unit

\checkmark Long term ordinary annuity
\checkmark Long term annuity due
\checkmark Amortization \& sinking Funds
\checkmark Some real life examples

```
                جامعة أبو بكر بلقايد -تلمسان
كلية العلوم الاقتصـادية والتسيير والعلوم التجارية
```

Course
Unit course

Number Unit
9

Unit Subject

Financial Mathematics

FIN 118

Long Term Annuities
Amortization \& sinking Funds

we will see in this unit

\checkmark Long term ordinary annuity
\checkmark Long term annuity due
\checkmark Amortization \& sinking Funds
\checkmark Some real life examples

LEARNING OUTCOMES

At the end of this unit, you should be able to:

1. Understand what is meant by "long term annuities".
2. Calculate Present and future value long term annuities for the case of ordinary and annuity due.
3. Calculate the single payment for real life examples in the case of long term annuities (Amortization \& sinking Funds).

Introduction

- As we say in unit 8, Annuity is a series of equal cash payments or deposits. These regular equal payments can be planned for short term, intermediate or long term periods.
- In this unit we are interested to the calculation of long term payments or deposits.
- Two basic questions can be exposed with annuities:
- Calculate how much money will be accumulated if we consider an annuity plan for long time (30 years for example)
- How to calculate the periodic payments or deposits in order to obtain a specific amount on a given time period (calculate monthly payments for a mortgage loan for example).

Long Term Ordinary Annuity

- As we have seen in unit 8 , the same formula is applied to the case of long term annuities.
- The future and present value of an ordinary annuity are given respectively by

$$
F V A_{n}=P M T\left[\frac{(1+i)^{n}-1}{i}\right]
$$

$$
P V A_{n}=P M T\left[\frac{1-(1+i)^{-n}}{i}\right]
$$

if payments are made annually.

- If payments are made non annually (more than once in year) we must introduce in the previous formula the number of times per year. So, we have the following formula

$$
F F A_{n, t}=P M T\left[\frac{\left(1+\frac{i}{t}\right)^{n . t}-1}{\frac{i}{t}}\right]
$$

$$
P V A_{n, t}=P M T\left[\frac{1-\left(1+\frac{i}{t}\right)^{-n . t}}{\frac{i}{t}}\right]
$$

Long Term Ordinary Annuity

Example1

You plan to deposit in an account $\$ 5000$ at the end of each year for the next 25 years. If the account pays 6% annually, what is the value of your deposits at the end of 25 years? Solution

Long term Ordinary Annuity

Example2

You plan to deposit, in an account, $\$ 100$ at the end of each month for the next 25 years. If the account pays 6\% annually, what is the value of your deposits at the end of 25 years?
Solution

Long Term Ordinary Annuity

Example3

You plan to withdraw at the end of each year from an account $\$ 5000$ for the next 25 years. If the account pays 6% annually, what is the amount that you must deposit today in order to guarantee these withdrawals?
Solution

Long term Ordinary Annuity

Example4

You plan to withdraw at the end of each month $\$ 100$ from an account of the next 25 years. If the account pays 6% annually, what is the amount that you must deposit today in order to guarantee these withdrawals?
Solution

Long Term Annuity Due

- As we have seen in unit 8 , the same formula is applied to the case of long term annuities.
- The future and present value of an annuity due are given respectively by

$$
F V A_{n}=P M T\left[\frac{(1+i)^{n}-1}{i}\right](1+i)
$$

$$
P V A_{n}=P M T\left[\frac{1-(1+i)^{-n}}{i}\right](1+i)
$$

if payments are made annually.

- If payments are made non annually (more than once in year) we must introduce in the previous formula the number of time per year. So, we have the following formula

$$
F V A_{n, t}=P M T\left[\frac{\left(1+\frac{i}{t}\right)^{n . t}-1}{\frac{i}{t}}\right]\left(1+\frac{i}{t}\right)
$$

$$
P V A_{n, t}=P M T\left[\frac{1-\left(1+\frac{i}{t}\right)^{-n . t}}{\frac{i}{t}}\right]\left(1+\frac{i}{t}\right)
$$

Long Term Annuity Due

Example1

You plan to deposit in an account $\$ 5000$ at the beginning of each year for the next 25 years. If the account pays 6% annually, what is the value of your deposits at the end of 25 years?
Solution

Long term Annuity Due

Example2

You plan to deposit in an account $\$ 100$ at the beginning of each month for the next 25 years. If the account pays 6% annually, what is the value of your deposits at the end of 25 years?
Solution

Long Term Annuity Due

Example3

You plan to withdraw from an account $\$ 5000$ at the beginning of each year for the next 25 years. If the account pays 6% annually, what is the amount that you must deposit today in order to guarantee these withdrawals?

Solution

Long term Annuity Due

Example4

You plan to withdraw from an account $\$ 100$ at the beginning of each month for the next 25 years. If the account pays 6% annually, what is the amount that you must deposit today in order to guarantee these withdrawals?

Solution

Amortization \&Sinking Funds إطفاء/اهلاك القروض أو استّهلاك القروض صندوق إطفاء الاين أو اِحْنَيَّطِيّ سداد قرض

- When a lender pays a debt (including interest) by making periodic payments at regular intervals, the debt is said to be amortized.
- When a payment is made to an investment fund each period at a fixed interest rate to yield a predetermined future value, the payment is called a sinking fund.

Amortization \&Sinking Funds

- Ordinary Amortization Formula

Annual	Non-annual
$P M T=P V A\left(\frac{i}{1-(1+i)^{-n}}\right)$	$P M T=P V A\left(\frac{\frac{i}{t}}{1-\left(1+\frac{i}{t}\right)^{-n \times t}}\right)$

- Ordinary Sinking Fund Payment

Annual	Non-annual
$P M T=F V A\left[\frac{i}{(1+i)^{n}-1}\right]$	$P M T=F V A\left[\frac{\frac{i}{t}}{\left(1+\frac{i}{t}\right)^{\eta \times t}-1}\right]$

Real life example: Loan Amortization

Example

Suppose you want to borrow money to buy a house. You are considering a 7 -years or a 25 -years loan.
A bank offers different interest rates, reflecting the differences in risks of intermediate-term and long-term lending.

* For the 7 -years loan, the annual interest rate is 5.25\% compounded monthly.
* For the 25-years loan, the annual interest rate is 6.75\% compounded monthly.
\rightarrow If you borrow $\$ 150000$, what would be your monthly payments for each type of loan?

Real life example: Loan Amortization

 SolutionFirst Scenario: 7-years loan

Second Scenario: 25-years loan

Real life example: Sinking Fund

Example 1

Suppose you decide to use a sinking fund to save $\$ 150000$ for a house. If you plan to make 300 monthly payments (25 years $\times 12=300$) and you receive 6.75% interest per annum, what is the required payment for an ordinary annuity?
Solution

Real life example: Sinking Fund

Example 2

Suppose you use a sinking fund to save $\$ 50000$ for a car. If you plan on 60 monthly payments (5 years $\times 12=60$) and you receive 5% interest per annum, what is the required payment for an ordinary annuity?

Solution

Time to Review!

\checkmark Long term annuities is an extension to the ordinary and annuity due.
\checkmark Making periodic payments to repay a debt, including the principal and interest, is called amortization.
\checkmark A fund into which periodic payments necessary to realise a given sum of money in the future are made is called sinking fund.

we will see in the next unit

\checkmark What's a bond
\checkmark Different types of bonds
\checkmark Bond valuation

UNIVERSITY OF TLEMCEN
Economic and Management Sciences

جامعة أبو بكر بلقايد -تلمسان و الان الان
كلية العلوم الاقتصـادية و التسيير و العلوم التجارية

Course
Unit course

Number Unit

Unit Subject
Bond Valuation

we will see in this unit

\checkmark What's a bond
\checkmark Different types of bonds
\checkmark Bond valuation

LEARNING OUTCOMES

At the end of this unit, you should be able
to:

1. Understand what is meant by "Bond".
2. Know the different types of bonds.
3. Calculate the value of a bond.

What is a Bond

Definition:

- A debt instrument: When one purchases a bond, one essentially lends an organization such as the government or a corporation a specified amount of money which the borrower agrees to repay at a designated time.
- A promise to pay interest over a specific term at stated future dates and then pay lump sum at maturity (the end of the term).
- Issued by corporations and governments as a way to provide money to the company.

Components of a bond

- Principal or Face value of the bond: The amount of money that is paid to the bondholders at maturity. For most bonds this amount is $\$ 1,000$ (and its doubles). It also generally represents the amount of money borrowed by the bond issuer.
- Coupon rate or rate of interest : It is expressed as a percentage of the bond's face value. It also represents the interest cost of the bond to the issuer.

Components of a bond

- Coupon Payments: It represent the periodic interest payments from the bond issuer to the bondholder. The annual coupon payment is calculated by multiplying the annual coupon rate by the bond's face value. Since most bonds pay interest semiannually, generally one half of the annual coupon is paid to the bondholders every six months.
- Maturity date: It represents the date on which the bond matures, i.e., the date on which the face value is repaid. The last coupon payment is also paid on the maturity date.

Bond Valuation

Time line of payments

Types of Bonds

- Government Bonds: or Treasury Bonds, a debt security issued by a government to support government spending.
- Corporate Bonds: a debt security issued by companies and sold to investors in order to finance expansion or raise funds for other expenses. Interest rates accorded to this type of bonds is higher than government bonds.
- Municipal Bonds: a debt security issued by a state, a municipality or a county in order to finance its projects or expenditures. Municipal bonds may be general obligations of the issuer or secured by specified revenues.

Bond Valuation

- Bonds are valued using time value of money concepts.
- Their coupon, or interest, payments are treated like an equal cash flow stream (annuity).
- Their face value is treated like a lump sum.

$$
\begin{aligned}
& \left.P V(\text { Bond })=\sum_{t=1}^{n} \frac{\text { Coupon }}{(1+i)^{t}}+\frac{\text { Face Value of Bond }}{(1+i)^{n}}\right] \\
& P V(\text { bond })=\text { Coupon } \times\left[\frac{1-(1+i)^{-n}}{i}\right]+\frac{\text { Face Value of bond }}{(1+i)^{n}}
\end{aligned}
$$

$$
\text { Coupon }=\text { Face Value } \times \text { Coupon rate }
$$

$C=$ Coupon; $r=$ annual coupon rate; $i=$ annual interest rate; $F V=$ face value; $n=$ number of years.

Bond Valuation

Example 1: Annual Coupon Payments

Your father bought a 10 -year bond from Al-Nasr Corporation Europe Ltd. The bond has a face value of $\$ 1000$ and pays an annual coupon. The annual coupon rate is equal to 10%. The current market rate of return is 12% (or the discount rate).
1- Find the value of the coupon.
2- Find the Price of the Bond (Market value of the bond to day).

Bond Valuation

Solution:

1/ The value of the coupon

2/ The bond price is the Present value of the coupon stream plus the Present Value of the Face Value.

Bond Valuation

Non-annual Coupon Payments

- The rule for valuing annual bonds is easily extended to valuing bonds paying interest even more frequently (semi-annually, quarterly, monthly).
- For example, to determine the value of a bond paying interest semi- annually, we can remark that we have to pay the coupon two times a year. Then, to calculate the price of the bond, we must double the number of annual periods and the annual coupon payment and divide the coupon rate and the discount rate by two.

Bond Valuation
 Non-annual Coupon Payments

- In general, if we let t be equal to the number of payments per year, n be equal to the maturity in years and i be the annual discount rate, then the general formula for valuing a bond can be expressed as follows:
$P V($ bond $)=$ Coupon $\times\left[\frac{1-\left(1+\frac{i}{t}\right)^{-n \times t}}{\frac{i}{t}}\right]+\frac{\text { Face Value of bond }}{\left(1+\frac{i}{t}\right)^{n \times t}}$

$$
\text { Coupon }=\text { Face Value } \times \frac{\text { Coupon rate }}{}
$$

$C=$ Coupon; $r=$ Annual coupon rate; $i=$ interest rate; $F V=$ face value; $n=$ number of years; $t=$ number of times in 1 year.

Bond Valuation

Example 2: Semi-Annual Coupon Payments

Your father bought a 10-year bond from Al-Nasr Corporation Europe Ltd. The bond has a face value of $\$ 1000$ and pays a semi-annual coupon. The annual coupon rate is 10%. The current market rate of return is 12% (or the discount rate).
1- Find the value of the coupon.
2- Find the Bond price.

Bond Valuation

Solution:

1/ The value of the coupon

2/ The bond price is the Present value of the coupon stream plus the Present Value of the Face Value.

Relation between coupon rate and discount rate

First Relation:
three cases are possible:
\checkmark Coupon rate = discount rate
The price of the bond equal to the Face value of the bond \Rightarrow par bond
\checkmark Coupon rate > discount rate The price of the bond is greater than the Face value of the bond \Rightarrow premium bond
\checkmark Coupon rate < discount rate
The price of the bond is smaller than the Face value of the bond \Rightarrow discount bond

Relation between bond price and discount rate

Second Relation:

Two cases are possible:
\checkmark Rate of return increase \Rightarrow The price of the bond decreases
\checkmark Rate of return decrease \Rightarrow The price of the bond increases
\checkmark Inverse relation between bond price and discount rate

$$
\frac{\Delta B P}{}<0
$$

Bond Valuation

Example 3:

Your father bought a 15-year bond from Al-Nasr Corporation Europe Ltd. The bond has a face value of $\$ 2000$ and pays an annual coupon. The annual coupon rate is fixed at 10%.

1- Find the price of the bond if the current market rate of return is 8%. What we can conclude?

2- Find the price of the bond if the current market rate of return is 10%. What we can conclude?

3- Find the price of the bond if the current market rate of return is 12%. What we can conclude?

Bond Valuation

Solution:

Coupon $=$

1- If the market interest rate is 8% (the discount rate), the market value of the bond is:

2- If the market interest rate is 10% (the discount rate), the market value of the bond is:

Bond Valuation

Solution:

3- If the market interest rate is 12% (the discount rate), the market value of the bond is:

Time to Review !

\checkmark Bonds are debt instruments with maturity date.
\checkmark If the coupon rate is greater than the market rate, the market value of the bond is greater than the Face value of the bond.
\checkmark If the coupon rate is smaller than the market rate, the market value of the bond is smaller than the Face value of the bond.
\checkmark If the two rates are equal, market value is equal to the Face value of the bond.

we will see in the next unit

\checkmark Meant of Equal short term payments
and settlement of short-term debt
\checkmark How to Calculate the amount of total payments.
\checkmark How to Calculate the amount of a new settlement

```
جامعة أبو بكر بلقابد -تلمسان
كلية العلوم الاقتصـادية والتسيير و العلوم التجارية
```

Course
Unit course
Number Unit
Unit Subject

Financial Mathematics

FIN 118
11
Equal short term payments Settlement of short-term debt

we will see in this unit

\checkmark Meant of Equal short term payments and settlement of short-term debt
\checkmark How to Calculate the amount of total payments.
\checkmark How to Calculate the amount of a new settlement

LEARNING OUTCOMES

At the end of this unit, you should be able to:

1. Apply the rule of an ordinary annuity and an annuity due to Equal short term payments and settlement of short-term debt
2. Calculate the amount of total payments and the amount of total settlement of short-term debt.

Introduction

In unit 10, we have seen that a multiple stream of cash flow that is made in an equal size and at a regular interval is known as simple annuity. Therefore we have seen that exists four types of Simple annuity: Ordinary Annuity, Annuity Due (unit10), Deferred Annuity, and Perpetuity. So we have applied the compound interest to this type of annuity to calculate future or present value of the amount of all stream.

In this unit we attempt to apply the simple interest rather than compound interest for multiple stream of cash flow known as Equal short term payments. We also explain how to apply the settlement of short-term debt via some practical examples.

1/ Equal short term payments

Definition: Equal short term payments is a series of equal cash payments made at the end or at beginning of each simple period.

Examples:
i/ When you buy some house wares in monthly installment
ii/ When financing operational activities of Firm.

Ordinary Payments / Payments due

Definition: Ordinary payments, called the reimbursement installments, which payments are to be paid at the end of each period of time, it has paid at the end of every month or every two months, or every 3 months or etc.

Definition: Payments Due, called the reimbursement installments, which payments are to be paid at the beginning of each period of time, it has paid at the beginning of every month or every two months, or every 3 months or etc.

How to calculate Total of installments?

Generally, the total of installments is equal to the principal plus interest. It is determined as follow:

$$
\text { Total Installments }=\text { Principal }+ \text { Interest }
$$

Total Installments $=P M T \times n+P M T \times i \times T$

$$
\text { Total Installments }=P M T(n+i \times T)
$$

* PMT: the installment to be paid at each period,
* i : interest rate per period,
* n : number of payments,
* T: the number of time periods.

How to calculate Total of installments?

The number of time periods (T) is generally, function of the number of payments.

$$
T=\frac{n}{2}\left(\begin{array}{c}
\text { Number of periods of the first payment until maturity } \\
+ \\
\text { Number of periods of the last payment until maturity }
\end{array}\right)
$$

Example1: Suppose you plan to deposit $\$ 1000$ at the end of each month into an account for one year. If the account pays a simple interest equal to 15% annually, what is the value of your deposits at the end of the year?
Solution:

How to calculate Total of installments?

Example2: Suppose you plan to deposit \$1000 at the beginning of each month into an account for one year. If the account pays a simple interest equal to 15% annually, what is the value of your deposits at the end of the year?

Solution:

How to calculate Total of installments?

Example3: Suppose you plan to deposit $\$ 1000$ in the middle of each month into an account for one year. If the account pays a simple interest equal to 15% annually, what is the value of your deposits at the end of the year?
Solution:

How to calculate Total of installments?

Example4: Suppose you plan to deposit $\$ 1000$ at the end of each month into an account for six months. If the account pays a simple interest equal to 15% annually, what is the value of your deposits at the end of the year?

Solution:

How to calculate Total of installments?

Example5: Suppose you plan to deposit $\$ 1000$ at the end of each two months into an account for one year and half. If the account pays a simple interest equal to 15% annually, what is the value of your deposits at the end of the period?

Solution:

2/ the settlement of short-term debt
Definition: The settlement of short-term debt is intended to an agreement between the debtor and the creditor to replace old debt by new debt. Therefore the agreement includes a method of replacement and general rule used is the equality between the value of old debt and the value of new debt at a specific date which is called the settlement date.

Rule:

The value of the old debt at the date of settlement

$$
=
$$

The value of the new debt at the date of settlement

How to calculate the value of New Debt ?

Generally, we have three cases:
Case 1 : the settlement date is before all dates of maturity. So we must calculate the present value of each batch at the date of settlement.

Case 2 : the settlement date is before one date of maturity. So we must calculate the PV of each batch after the date of settlement and FV of each batch before the date of settlement.

Debt 1 Debt 2

$$
\text { Date of Debt } 3
$$

Debt 4
Case 3: the settlement date is after all dates of maturity, we must calculate the future value of each batch at the date of settlement

How to calculate the value of New Debt and

installments ?

Example 1a: Someone owes the following amounts: 1000 DA payable after 3 months 3000 DA payable after 6 months 6000 DA payable after 9 months
It was agreed with the creditor to sign two new promissory notes with the same amount fixed at 4000 DA. The first worth after 4 months, the second after 10 months and pay the rest owed cash immediately.

Calculate the amount of cash paid by the debtor if we set the discount rate at 5% per annum.

How to calculate the value of New Debt and installments?

Example 1a: Solution

$$
P V_{1}=1000 \times\left[1-0.05 \times \frac{3}{12}\right]=987.5 \quad P V_{2}=3000 \times\left[1-0.05 \times \frac{6}{12}\right]=2925
$$

$$
P V_{3}=6000 \times\left[1-0.05 \times \frac{9}{12}\right]=5775 \quad P V(\text { olddebt })=9687.5
$$

How to calculate the value of New Debt and installments ?

Example 1a: Solution (continued)

$$
P V_{1}=x \quad P V_{2}=4000\left[1-0.05 \times \frac{4}{12}\right]=3933.33\left[\begin{array}{l}
P V_{3}=4000\left[1-0.05 \times \frac{10}{12}\right] \\
=3833.33
\end{array}\right.
$$

$$
P V(\text { Newdebt })=x+3933.33+3833.33
$$

$$
P V(\text { Newdebt })=7766.66+x
$$

$$
P V(\text { olddebt })=P V(\text { Newdebt })
$$

$$
7766.66+x=9687.5 \Rightarrow x=9687.5-7766.66=1920.84
$$

The amount of cash paid by the debtor $=1920.84$ DA

How to calculate the value of New Debt and

installments ?

Example 1b: Someone owes the following amounts: 1000 DA payable after 3 months 3000 DA payable after 6 months 6000 DA payable after 9 months

It was agreed with the creditor to pay immediately 4000 DA and sign two new promissory notes. The first worth after 4 months, the second after 10 months. If we set the discount rate at 5% per annum and the value of the second promissory note equal to 4000 DA, calculate the amount of the first promissory note.

How to calculate the value of New Debt and installments?

Example 1b: Solution

$$
P V_{1}=1000 \times\left[1-0.05 \times \frac{3}{12}\right]=987.5 \quad P V_{2}=3000 \times\left[1-0.05 \times \frac{6}{12}\right]=2925
$$

$$
P V_{3}=6000 \times\left[1-0.05 \times \frac{9}{12}\right]=5775 \quad P V(\text { olddebt })=9687.5
$$

How to calculate the value of New Debt and installments?

Example 1b: Solution (continued)

$$
P V_{1}=4000 \quad P V_{2}=x\left[1-0.05 \times \frac{4}{12}\right]=0.983 x
$$

$$
\begin{aligned}
& P V_{3}=4000\left[1-0.05 \times \frac{10}{12}\right] \\
& =3833.33
\end{aligned}
$$

$$
P V(\text { Newdebt })=4000+0.983 x+3833.33
$$

$$
P V(\text { Newdebt })=7833.33+0.983 x
$$

$$
P V(\text { olddebt })=P V(\text { Newdebt })
$$

$$
7833.33+0.983 x=9687.5 \Rightarrow x=\frac{9687.5-7833.33}{0.983}=1886.24
$$

The value of the first promissory note $=1886.24 \mathrm{DA}$

How to calculate the value of New Debt and

installments ?

Example 1c: Someone owes the following amounts: 1000 DA payable after 3 months 3000 DA payable after 6 months 6000 DA payable after 9 months
It was agreed with the creditor to pay immediately the amount of 2800 DA, and the rest of new debt is divided on two promissory notes. The value of the first promissory note is equal to 4000 DA payable after 4 months and the second payable after 10 months. If we set the discount rate at 5% per annum, calculate the nominal value of the second new promissory note.

How to calculate the value of New Debt and installments?

$$
P V_{1}=1000 \times\left[1-0.05 \times \frac{3}{12}\right]=987.5 \quad P V_{2}=3000 \times\left[1-0.05 \times \frac{6}{12}\right]=2925
$$

$$
P V_{3}=6000 \times\left[1-0.05 \times \frac{9}{12}\right]=5775 \quad P V(\text { olddebt })=9687.5
$$

How to calculate the value of New Debt and installments?

$$
\begin{aligned}
& \text { Example 1c: Solution (continued) } \\
& \begin{array}{rl}
\left.5 \times \frac{4}{12}\right]=3933.33 & P V_{3}=x\left[1-0.05 \times \frac{10}{12}\right] \\
=0.958 x
\end{array}
\end{aligned}
$$

$$
P V(\text { Newdebt })=2800+3933.33+0.958 x
$$

$$
P V(\text { Newdebt })=6733.33+0.958 x
$$

$$
P V(\text { olddebt })=P V(\text { Newdebt })
$$

$$
6733.33+0.958 x=9687.5 \Rightarrow x=\frac{9687.5-6733.33}{0.958}=3083.69
$$

The value of the second promissory note $=3083.69 \mathrm{DA}$

Time to Review!

Equal short term payments Settlement of short-term debt

Ordinary Payments / Payment Due

Total Installments $=$ Principal + Interest
Total Installments $=P M T(n+i \times T)$
$T=\frac{n}{2}$ (Duration of the first payment + Duration of the last payment $)$
the settlement of short-term debt The value of the old debt at the date of settlement

$$
=
$$

The value of the new debt at the date of settlement

[^0]: 都

