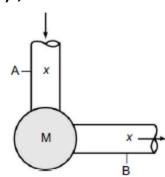


République Algérienne Démocratique et Populaire
Ministère de l'Enseignement Supérieur et de la Recherche Scientifique
Université AbouBakr Belkaid – Tlemcen
Faculté de Technologie
Département d'Hydraulique

SERIE D'EXERCICES N°02

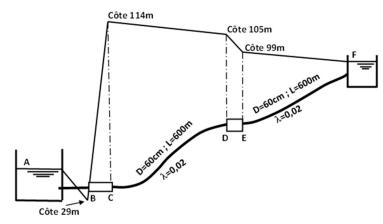
(Machines hydrauliques et stations de pompage) ; 1ère Année Master


1- Pour une machine hydraulique illustrée à la Figure en face les données suivantes sont disponibles :

Diamètres : en A : 20 cm ; en B : 30 cm Altitude (m) : en A : 105,00 ; à B : 100,00 Pressions : en A : 100 kPa ; en B : 200 kPa

Débit : 200 L/s d'eau.

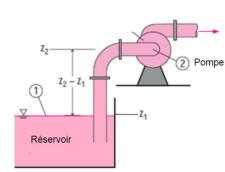
Cette machine est-elle une pompe ou une turbine ? Calculer la puissance d'entrée ou de sortie selon qu'il s'agit


d'une pompe ou d'une turbine.

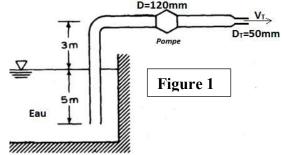
2- Soit le système hydraulique de la figure en face ou la pompe BC fournit de l'eau au réservoir F. On a représenté la ligne piézométrique dans la figure ci-contre.

Calculer

- **a-** Le débit de l'installation en m³/s
- **b-** La puissance fournie à l'eau par la pompe BC en KW
- **c-** La puissance consommée par la turbine DE' en Kw:
- **d-** Le niveau d'eau du réservoir F

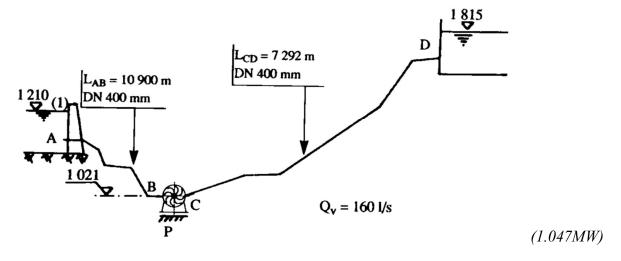

- **3-** Une pompe centrifuge est placée au-dessus d'un grand réservoir et débite $0.014 \, m^3/s$. Pour ce débit le $NPSH_{requit}$ de la pompe est 4.6m; La conduite d'aspiration a un diamètre de $100 \, mm$. Déterminer la hauteur d'aspiration maximale, si la température de l'eau est de 30° C et la pression de vapeur est $pv = 4.24 \, kPa$ (patm = 1.013bar). La seule perte de charge à considérer est celle du filtre d'aspiration kfiltre = 20.
- **4-** Une pompe centrifuge auto-amorçante est utilisée pour transvaser de l'eau à 25°*C* à partir d'un réservoir dont le plan d'eau est situé à la cote *z*1=2,2*m* au-dessous de l'axe de la pompe (*z*2). Le tuyau d'aspiration a une longueur de 2,8*m* et un diamètre de 80 *mm*. On admet un coefficient de perte de charge linéaire de 0,022.

Les coefficients de pertes de charge singulières sont :

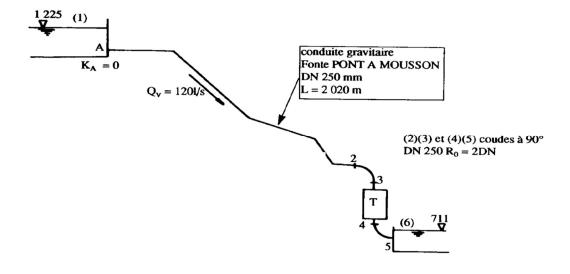

- L'entrée du tuyau d'aspiration : Kasp=0,85
- Un coude à 90° : $K_{coude} = 0.3$
- 1. Déterminer le débit maximum hors cavitation si $pv=3,169 \ kPa$, sachant que :

$$NPSHr = 2.28 + 1500Q_v^2$$

- 1. Reprendre la question avec un diamètre de 100 mm.
- 2. Que conclure?
- 3. Déterminer le débit maximum hors cavitation pour : T = 60°C et $p_v = 19.9$ kPa Et quelle est votre conclusion ?



- **5-** Dans le système de pompage de la Figure 1se termine par une tuyère de diamètre **D**T=**50mm** d'où s'échappe un jet à l'air libre.
 - Si la perte de charge totale est de 6 mce dans la canalisation (aspiration +refoulement) et si la pompe délivre 40 kW de puissance à l'eau,
 - A. Déterminer la vitesse de sortie V_T et le débit O.
 - B. Vérifier la condition de non cavitation Sachant que le débit refoulé est de Q=64,17 l/s, la pression absolue de vapeur de l'eau est P_v=0,024 bar et la perte de charge dans la conduite d'aspiration est de 3mce.



6- Soit le système hydraulique en bas. La fonte Pont à Mousson et la fonte Bonna ont une rugosité de $\varepsilon = 0.1 \text{mm}$

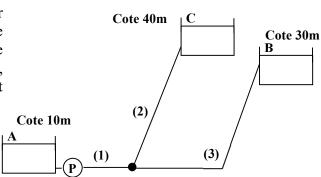
Calculer la puissance que la pompe P doit fournir au fluide. Tracer la ligne piézométrique et la ligne de charge

7- La fonte Pont à Mousson a une rugosité de $\varepsilon = 0,1$ mm. Calculer la charge aux points 3 et 4. Déterminer l'énergie prélevée au fluide et la puissance électrique produite (rendement=0.81). Tracer la ligne piézométrique et la ligne de charge.

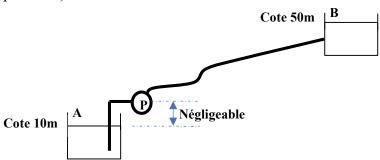
 $(H_3 = 1183m, H_4 = 711m, E_f = 556kW, E_e = 450kW)$

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université AbouBakr Belkaid – Tlemcen Faculté de Technologie Département d'Hydraulique

SERIE D'EXERCICES N°03


(Machines hydrauliques et stations de pompage) ; 1ère Année Master

1- Une pompe "P" refoule de l'eau du réservoir "A" vers deux réservoir "C" et "D" selon le schéma en face, la caractéristique de cette pompe est $H_P = 50 - 0.1 \cdot Q^2$ avec H_P en m et Q en 1/s, les conduites de refoulement (1), (2) et (3) ont respectivement les résistances $R_1 \approx 0$

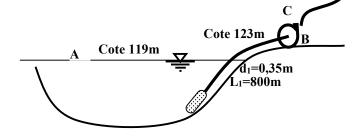

 $R_2 = 0.1 \text{ et } R_3 = 0.15 \text{ m} \cdot \text{s}^2/l^2$

Si $z_B \neq z_A$, $z_A = 10m$, $z_C = 40m$ et $z_B = 30m$ - Déterminer Q_1 , Q_2 et Q_3

- - Calculer la hauteur manométrique de la pompe P

- **2-** Soit une pompe "P» dont la caractéristique est $H_P = 60 0.2 \cdot Q^2$ avec H_P en m et Q en l/s, refoulant de l'eau dans un réservoir à travers une conduite de résistance $R = 0.112 \, m \cdot s^2/l^2$ selon le schéma de l'installation ci-dessous :
 - a) Déterminer le point de fonctionnement de cette pompe
 - b) Que le débit délivré si l'on prend en seconde pompe monté en parallèle (identique à la première)

3- Une pompe centrifuge (BC) qui tourne à 1500 tr/min, Le tableau ci-dessous résume ses caractéristique hauteur- débit et rendement.

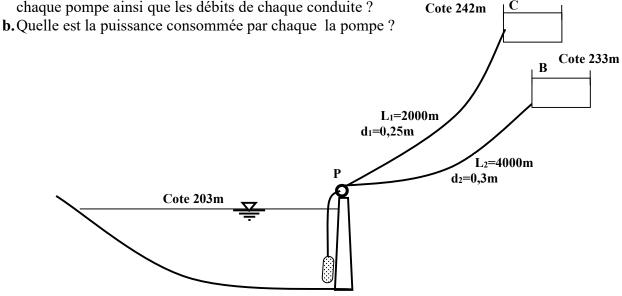

Q(1/s)	0	20	40	60	90	110	130	150
H(m)	110.5	107.5	104	99	90	81	70	57.5
η(%)	-	-	58	66	74	75.5	73	68
NPSH	1.17	1.2	1.22	1.26	1.31	1.45	1.93	3.4

Cote 182m D

 $d_2 = 0.3 m$

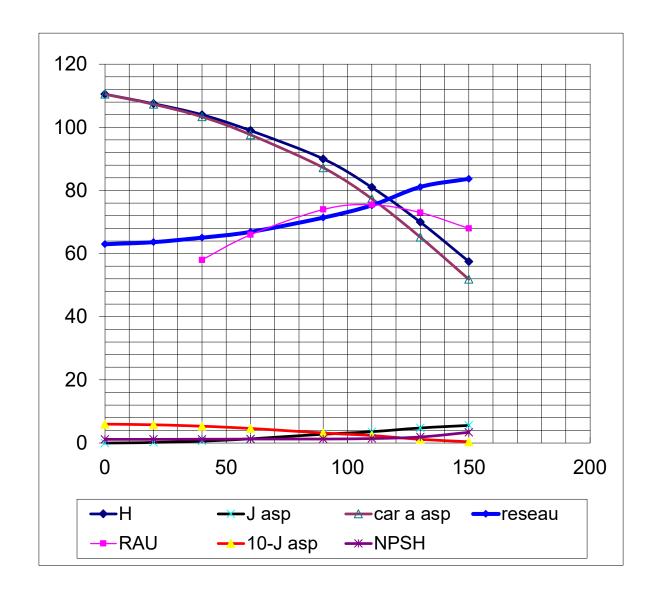
L₂=1295m

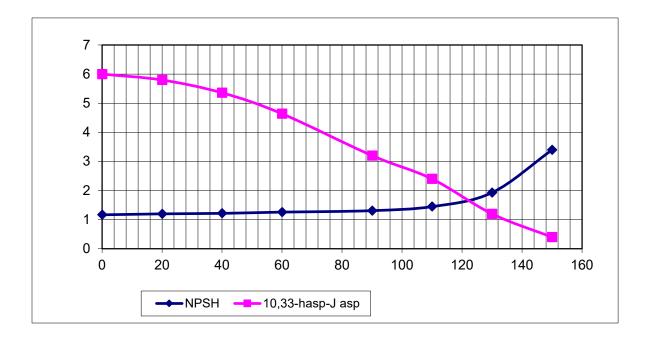
- a. Déterminer le point de fonctionnement de la pompe et de l'installation
- **b.** Calculer la pression à la sortie de la pompe (B)
- c. Vérifier le risque de cavitation



4- Pour alimenter deux villes en eau, on réalise une station de pompage constituée de trois pompes centrifuge identiques montées en parallèle(+1 de secours) qui tournent à 2800 tr /min, Le tableau ci-dessous résume ces caractéristiques hauteur- débit et rendement.

$Q(m^3/h)$	0	20	40	60	80	100	120	140	160
H(m)	65.5	65	64.5	63.5	61	57.5	52.5	46	37.5
η(%)	-	-	29	48	62	70.5	74.5	70	59


Ces pompes sont utilisées pour alimenter deux réservoir par deux conduites en acier


a. Déterminer de point de fonctionnement de l'installation et de chaque pompe ainsi que les débits de chaque conduite ?

H. Bouchelkia

Q	0	20	40	60	90	110	130	150
Н	110,5	107,5	104	99	90	81	70	57,5
RAU			58	66	74	75,5	73	68
j asp	0	3E-04	8E-04	0,002	0,004	0,005	0,006	0,007
J asp	0	0,2	0,64	1,36	2,8	3,6	4,8	5,6
j ref	0	5E-04	0,002	0,003	0,007	0,01	0,014	0,016
J ref	0	0,648	2,072	3,885	8,418	12,3	18,13	20,72
car a asp	110,5	107,3	103,4	97,64	87,2	77,4	65,2	51,9
reseau	63	63,65	65,07	66,89	71,42	75,3	81,13	83,72
NPSH	1,17	1,2	1,22	1,26	1,31	1,45	1,93	3,4
10,33-hasp-J asp	6	5,8	5,36	4,64	3,2	2,4	1,2	0,4

