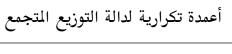
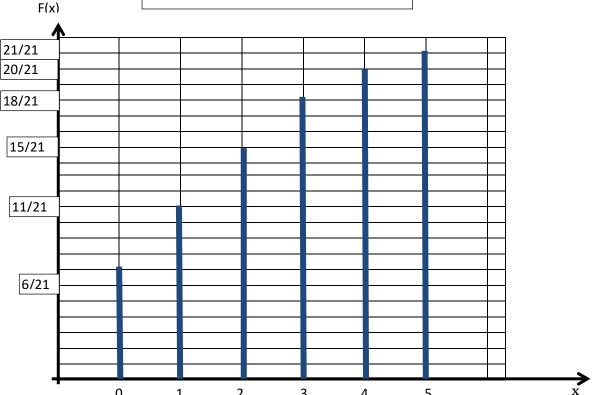
قسم الجذع المشترك مقياس: الاحصاء 2 2022 – 2023 الاستاذ :بوصالح سفيان

حلول تمارين الفصل الرابع:

التمرين الأوّل:

X :عدد الأعطاب اليومية لجهاز حاسوب


$X=x_i$	0	1	2	3	4	5	Σ
P(X=x _i)	6α	5α	4α	3α	2α	α	α21
P(X=x _i)	$\frac{6}{21}$	$\frac{5}{21}$	$\frac{4}{21}$	$\frac{3}{21}$	$\frac{2}{21}$	$\frac{1}{21}$	$\frac{21}{21}$
$p(x_i \le x)$	$\frac{6}{21}$	$\frac{11}{21}$	$\frac{15}{21}$	$\frac{18}{21}$	$\frac{20}{21}$	$\frac{21}{21}$	/
$x_i * p(x_i)$	$\frac{0}{21}$	$\frac{5}{21}$	$\frac{8}{21}$	$\frac{9}{21}$	$\frac{8}{21}$	$\frac{5}{21}$	$\frac{25}{21}$


1 عينة قيمة α

$$\sum p(x_i) = 1$$
; $21\alpha = 1$; $\alpha = \frac{1}{21}$

2 أكتب دالة التوزيع المتجمع ومثلها بيانيا.

$$F(x) = \begin{cases} \frac{6}{21} & si \ x \le 0 \\ \frac{11}{21} & si \ x \le 1 \\ \frac{15}{21} & si \ x \le 2 \\ \frac{18}{21} & si \ x \le 3 \\ \frac{20}{21} & si \ x \le 4 \\ \frac{21}{21} & si \ x \le 5 \end{cases}$$

3/ أحسب احتمال عدد الأعطاب في يوم ما لجهاز الحاسوب لا يزيد عن 4.

$$p(x \le 4) = F(x = 4) = \frac{20}{21}$$

$$p(x \le 4) = p(x = 4) + p(x = 3) + p(x = 2) + p(x = 1) + p(x = 0)$$
$$= \frac{2}{21} + \frac{3}{21} + \frac{4}{21} + \frac{5}{21} + \frac{6}{21} = \frac{20}{21}$$

$$p(x \le 4) = 1 - p(x > 4) = 1 - p(x \ge 5) = 1 - p(x = 5) = 1 - \frac{1}{21} = \frac{20}{21}$$

أحسب احتمال عدد الأعطاب في يوم لجهاز الحاسوب لا يقل عن 2.

$$p(x \ge 2) = 1 - p(x < 2) = 1 - p(x \le 1) = 1 - F(x = 1) = 1 - \frac{11}{21} = \frac{10}{21}$$

أحسب احتمال عدد الأعطاب في يوم لجهاز الحاسوب أكبر تماما من 1 واصغر أو يساوي 4.

$$p(1 < x \le 4) = p(x = 2) + p(x = 3) + p(x = 4) = \frac{4}{21} + \frac{3}{21} + \frac{2}{21} = \frac{9}{21}$$

قسم الجذع المشترك مقياس: الاحصاء 2 2022 – 2023 الاستاذ: بوصالح سفيان

بفتح المتراجحة مع نفى المتراجحة اذا سبقت بناقص

$$p(1 < x \le 4) = p(x > 1) - p(x > 4)$$

$$= [p(x = 2) + p(x = 3) + p(x = 4) + p(x = 5)] - [p(x = 5)]$$

$$= p(x = 2) + p(x = 3) + p(x = 4) = \frac{4}{21} + \frac{3}{21} + \frac{2}{21} = \frac{9}{21}$$

$$p(1 < x \le 4) = p(x \le 4) - p(x \le 1)$$

$$= [p(x = 4) + p(x = 3) + p(x = 2) + p(x = 1) + p(x = 0)]$$

$$- [p(x = 1) + p(x = 0)] = p(x = 4) + p(x = 3) + p(x = 2)$$

$$= \frac{2}{21} + \frac{3}{21} + \frac{4}{21} = \frac{9}{21}$$

4/ أحسب العدد اليومى المتوسط لأعطاب الحاسوب.

$$E(x) = \sum x_i * p(x_i) = \frac{25}{21} = 1.19 \cong 1$$

التمرين الثاني:

X: مدة المكالمة الهاتفية التي تصل إلى مكتب معين بالدقائق:

$$f(x) = \begin{cases} e^{-\frac{\alpha x}{2}} & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases}$$

 α عن قيمة الثابت α

$$\int_{-\infty}^{+\infty} f(x)dx = 1 \; ; \int_{0}^{+\infty} e^{-\frac{\alpha x}{2}} dx = 1 \; ; \frac{-2}{\alpha} \int_{0}^{+\infty} e^{-\frac{\alpha x}{2}} dx = 1$$
$$\frac{-2}{\alpha} \left[e^{-\frac{\alpha x}{2}} \right]_{0}^{+\infty} = 1 \; ; \frac{-2}{\alpha} * (0 - 1) = 1 \; ; \; \frac{2}{\alpha} = 1 \; ; \alpha = \frac{1}{2}$$
$$f(x) = \begin{cases} e^{-x} & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases}$$

2/ أحسب احتمال أن تفوق مدة مكالمة وصلت إلى هذا المكتب 03 دقائق.

$$p(x > 3) = \int_{3}^{+\infty} e^{-x} dx = [-e^{-x}]_{3}^{+\infty} = (0 + e^{-3}) = e^{-3}$$

قسم الجذع المشترك مقياس: الاحصاء 2 2022 – 2023 الاستاذ: بوصالح سفيان

3/ أحسب احتمال أن لا تفوق مكالمة وصلت إلى هذا المكتب 03 دقائق.

$$p(x < 3) = 1 - p(x > 3) = 1 - e^{-3}$$

4/ أحسب احتمال أن تفوق مدّة مكالمة واحدة على الأقل من بين ثلاثة مكالمات وصلت إلى هذا المكتب دقيقتين.

$$p(x > 2) = \int_{2}^{+\infty} e^{-x} dx = [-e^{-x}]_{2}^{+\infty} = (0 + e^{-2}) = e^{-2}$$

الطريقة الاولى ليكن y هو عدد المكالمات التي تفوق دقيقتين من بين 3 مكالمات

$$p(y > 1) = p(y = 1) + p(y = 2) + p(y = 3)$$

$$p(y \ge 1) = C_3^1 \times p(x > 2) \times p(x < 2) \times p(x < 2) + C_3^2 \times p(x > 2)$$

$$\times p(x > 2) \times p(x < 2) + C_3^3 \times p(x > 2) \times p(x > 2) \times p(x > 2)$$

$$= e^{-2} \times (1 - e^{-2}) \times (1 - e^{-2}) + e^{-2} \times e^{-2} \times (1 - e^{-2})$$

$$+ e^{-2} \times e^{-2} \times e^{-2}$$

$$= 3e^{-2} - 6e^{-4} + 3e^{-6} + 3e^{-4} - 3e^{-6} + e^{-6}$$

$$= 3e^{-2} - 3e^{-4} + e^{-6} = 0.3535$$

باستخدام الحادث العكسي

$$p(y \ge 1) = 1 - p(y < 1) = 1 - p(y \le 0) = 1 - p(x = 0)$$

$$= 1 - [p(x < 2) \times p(x < 2) \times p(x < 2)]$$

$$= 1 - [(1 - e^{-2}) \times (1 - e^{-2}) \times (1 - e^{-2})] = 1 - [(1 - e^{-2})^3]$$

$$= 1 - (0.86466)^3 = 0.3535$$

5/ أحسب المدة المتوسطة وتباين مدّة المكالمات التي تصل إلى هذا المكتب.

$$E(x) = \int_{-\infty}^{+\infty} x \times f(x) \, dx = \int_{0}^{+\infty} x \, e^{-x} \, dx$$

نستعمل التكامل بالتجزئة

$$\int U \times V' = [U \times V] - \int U' \times V$$

$$U = x \qquad U' = 1$$

وسم الجذع المشترك متياس: الاحصاء 2022 - 2022 وسماع المنعان
$$V=-e^{-x}$$
 $V'=e^{-x}$ $V'=e^{-x}$
$$\int_0^{+\infty} x \ e^{-x} \, dx = [-x \times e^{-x}]_0^{+\infty} - \int_0^{+\infty} -e^{-x} \, dx$$

$$\int_0^{+\infty} x \ e^{-x} \, dx = (0-0) + [-e^{-x}]_0^{+\infty} = \left(0-(-1)\right) = 1$$

حساب التباين:

$$v(x) = \int_{-\infty}^{+\infty} x^2 \times f(x) \, dx - E^2(x)$$

$$v(x) = \int_{-\infty}^{+\infty} x^2 \times e^{-x} \, dx - E^2(x)$$

$$\int U \times V' = [U \times V] - \int U' \times V$$

$$U = x^2 \qquad U' = 2x$$

$$V = -e^{-x} \qquad V' = e^{-x}$$

$$\int_{0}^{+\infty} x^2 \times e^{-x} \, dx = [-x^2 \times e^{-x}]_{0}^{+\infty} + 2 \int_{0}^{+\infty} x \, e^{-x} \, dx$$

$$\int_{0}^{+\infty} x^2 \times e^{-x} \, dx = 2 \int_{0}^{+\infty} x \, e^{-x} \, dx = 2 \times 1 = 2$$

$$v(x) = \int_{-\infty}^{+\infty} x^2 \times f(x) \, dx - E^2(x) = 2 - 1^2 = 1$$

التمرين الرابع:

x يمثل عدد الثلاجات المباعة في اليوم لبائع الأجهزة الكهرومنزلية

X_i	2	3	4	5	6	Σ
$p(x=x_i)$	0,10	0,25	0,35	0,19	0,11	1

قسم الجذع المشترك مقياس: الاحصاء 2 2022 - 2023 الاستاذ: بوصالح سفيان

$x_i \times p(x_i)$	0.20	0.75	1.4	0.95	0.66	3.96
$x^2_i \times p(x_i)$	0.4	2.25	5.6	4.75	3.96	16.96

علما أنّ الربح المحقق في كل ثلاجة يقدر بــ 1000 دج. أحسب:

1) متوسط عدد الثلاجات المباعة في اليوم.

$$E(x) = \sum x_i \times p(x_i) = 3.96 \cong 4$$

2) قيمة التباين لهذا المتغير.

$$V(x) = \sum_{i} x^{2}_{i} \times p(x_{i}) - E^{2}(x) = 16.96 - 3.96^{2} = 1.2784$$

3) أحسب الربح المتوسط في اليوم (E(y).

$$y = 1000 x$$
; $E(y) = E(1000 x)$,
 $E(y) = 1000 E(x) = 1000 \times 3.96 = 3960$

4) قيمة التباين للربح (y).

$$y = 1000 x$$
; $V(y) = V(1000 x)$,
 $V(y) = 1000^2 V(x) = 10000000 \times 1.2784 = 1278400$

التمرين الخامس:

x يمثل عدد الحلويات المباعة في اليوم

	30	31	32	33	34	35	36	37	38	39	Σ
$P(x=x_i)$	0,05	0,07	0,10	\boldsymbol{k}	0,15	0,13	0,012	0,09	0,08	0,06	0.742 + k
$p(x=x_i)$	0,05	0,07	0,1	0,258	0,15	0,13	0,012	0,09	0,08	0,06	1
$p(x_i \le x)$	0,05	0,12	0,22	0,478	0,628	0,758	0,77	0,86	0,94	1	
$x_i \times p(x_i)$	1,5	2,17	3,2	8,514	5,1	4,55	0,432	3,33	3,04	2,34	34,176
$x^2_i \times p(x_i)$				280,96							1173,824
	45	67,27	102,4	2	173,4	159,25	15,552	123,21	115,52	91,26	11, 3,021

1) أوجد قيمة الثابت k.

قسم الجذع المشترك مقياس: الاحصاء 2 2022–2023 الاستاذ :بوصالح سفياز

$$\sum p(x_i) = 1 \; ; 0.742 + k = 1 \; ; k = 1 - 0.742 = 0.258$$

2) أوجد دالة التوزيع المتجمع.

$$F(x) = \begin{cases} 0.05 & si \ x \le 30 \\ 0.12 & si \ x \le 31 \\ 0.22 & si \ x \le 32 \\ 0.478 & si \ x \le 33 \\ 0.628 & si \ x \le 34 \\ 0.758 & si \ x \le 35 \\ 0.77 & si \ x \le 36 \\ 0.86 & si \ x \le 37 \\ 0.94 & si \ x \le 38 \\ 1 & si \ x \le 39 \end{cases}$$

3) أحسب المنوال.

$$M_0 \equiv p_{max}(x_i)$$
; $M_0 \equiv 0.258$; $M_0 = 33$

4) نعتبر الربح المحقق يأخذ العلاقة التالية: y=50x+8 أحسب التوقع الرياضي والتباين لهذا المتغير.

$$y = 50x + 8$$
; $E(y) = E(50x + 8)$; $E(y) = 50 \times E(x) + 8$
 $E(x) = \sum x_i \times p(x_i) = 34.176 \approx 34$

$$E(y) = 50 \times E(x) + 8 = 50 \times 34.176 + 8 = 1716.8$$

$$y = 50x + 8 \quad ; V(y) = V(50 x + 8) \quad ; V(y) = 50^{2} \times V(x)$$

$$V(x) = \sum_{i} x^{2}_{i} \times p(x_{i}) - E^{2}(x) = 1173.824 - 34.176^{2} = 5.825024$$

$$V(y) = 50^{2} \times V(x) = 50^{2} \times 5.825024 = 14562.56$$