1st YEAR LMD SM & ST

<u>PW n°01</u>

Family & First names :		<u>Corrector</u> :
<u>Date of Birth</u> :		
Group :		<u>Mark</u> :
Date :	Laboratory n°:	

PW 1: INTRODUCTION TO PHYSICS PRACTICAL WORK

Experience : A scale repairer wants to replace a defective spring in a scale. The spring must have a stiffness constant $k = (3.00 \pm 0.05) N/m$ and a negligible mass. In his workshop, he found a spring of negligible mass but its stiffness constant is unknown.

Using Hook's Law : $F = k \times d$, where F represents the force applied to the spring, k the stiffness constant and d the elongation, he was able to calculate the value of k. As a result, he hung different masses on the spring and measured its elongation. Hook's law simplifies to :

$$d = \frac{g}{k}m \tag{1}$$

The measurements are reported in the table below.

Questions :

1- By comparing the physical equation (1) with the mathematical formula y = bx, establish the following identifications :

2- Complete the table below :

i	$m_i(kg)$	<i>d</i> _i (m)	$m_i d_i$ ()	m_i^2 ()	<i>bm_i</i> ()	$(d_i - bm_i)^2()$
1	0.010	0.03290				
2	0.020	0.06650				
3	0.040	0.13280				
4	0.060	0.19940				
5	0.080	0.26590				
n=			$\sum_{i=1}^{n} m_i d_i$	$\sum_{i=1}^{n} m_i^2$		$\sum_{i=1}^{n} (d_i - bm_i)^2$ $= \dots$

3- Give the numerical values of the following quantities with their corresponding units :

 $m{b}=$; $\Delta m{d}=$; $\Delta m{b}=$

- 4- On the same graph sheet, represent the experimental points d = f(m), the error bars as well as the line of slope **b**.
- 5- Calculate the spring stiffness constant and put it in the form $k = (\dots, \dots, \dots, \pm, \dots, \dots)$
- **6-** Can the repairer replace the defective spring ? Explain. We give : $g = 9.81 \text{ m/s}^2$