Family \& First names :
Date of Birth :
Group :
Date : Laboratory n° :

Corrector :

Mark :

PW 1: INTRODUCTION TO PHYSICS PRACTICAL WORK

Experience : A scale repairer wants to replace a defective spring in a scale. The spring must have a stiffness constant $\boldsymbol{k}=(\mathbf{3 . 0 0} \pm \mathbf{0 . 0 5}) \boldsymbol{N} / \boldsymbol{m}$ and a negligible mass. In his workshop, he found a spring of negligible mass but its stiffness constant is unknown.

Using Hook's Law : $\boldsymbol{F}=\boldsymbol{k} \times \boldsymbol{d}$, where \boldsymbol{F} represents the force applied to the spring, \boldsymbol{k} the stiffness constant and \boldsymbol{d} the elongation, he was able to calculate the value of \boldsymbol{k}. As a result, he hung different masses on the spring and measured its elongation. Hook's law simplifies to :

$$
\begin{equation*}
d=\frac{g}{k} m \tag{1}
\end{equation*}
$$

The measurements are reported in the table below.

Questions:

1- By comparing the physical equation (1) with the mathematical formula $\boldsymbol{y}=\boldsymbol{b} \boldsymbol{x}$, establish the following identifications:

$$
x=\quad, y=\quad, b=
$$

2- Complete the table below :

i	$m_{i}(\mathbf{k g})$	$d_{i}(\mathrm{~m})$	$m_{i} d_{i}(\ldots)$	$m_{i}^{2}(\ldots)$	$b m_{i}(\ldots)$	$\left(d_{i}-b m_{i}\right)^{2}(\ldots)$
1	0.010	0.03290				
2	0.020	0.06650				
3	0.040	0.13280				
4	0.060	0.19940				
5	0.080	0.26590				
n=....			$\sum_{i=1}^{n} m_{i} d_{i}$	$\sum_{i=1}^{n} m_{i}^{2}$ $=\text {. }$		$\sum_{i=1}^{n}\left(d_{i}-b m_{i}\right)^{2}$ = . \qquad

3- Give the numerical values of the following quantities with their corresponding units:

$$
b=\ldots \quad ; \quad \Delta d=\ldots \quad ; \quad \Delta b=\ldots
$$

4- On the same graph sheet, represent the experimental points $\boldsymbol{d}=\boldsymbol{f}(\boldsymbol{m})$, the error bars as well as the line of slope \boldsymbol{b}.

5- Calculate the spring stiffness constant and put it in the form $\boldsymbol{k}=(\ldots \ldots$. $\pm \ldots$.........)
6- Can the repairer replace the defective spring ? Explain. We give : $\boldsymbol{g}=\mathbf{9 . 8 1} \mathbf{m} / \mathbf{s}^{\mathbf{2}}$

