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Abstract

the main function of the immune system is to protect against infectious pathogens and to ensure 
tissue homeostasis. the latter function includes preventing autoimmune reactions, tolerizing cells to 
nonpathogenic environmental microorganisms, and eliminating apoptotic/damaged, transformed, or 
neoplastic cells. the process of carcinogenesis and tumor development and the role of the immune 
system in inhibiting progression of cancer have been the subject of intense research since the end  
of the 20th century and resulted in formulation of the cancer immunoediting hypothesis. the hypoth-
esis postulates three steps in oncogenesis: 1) elimination – corresponding to immunosurveillance,  
2) equilibrium in which the growth of transformed or neoplastic cells is efficiently controlled by immune 
effector mechanisms, and 3) escape in which cancer progresses due to an ineffective antitumor response.  
In parallel, a new field of science – immune-oncology – has arisen. Attempts are also being made to quan-
tify intra-tumoral and peritumoral t cell infiltrations and to define optimal immunological parameters 
for prognostic/predictive purposes in several types of cancer. the knowledge of relationships between  
the tumor and the immune system has been and is practically exploited therapeutically in the clinic 
to treat cancer. immunotherapy is a standard or supplementary treatment in various types of cancer.
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Introduction
The possible role of the immune system in controlling 

carcinogenesis was first suggested by Paul Ehrlich in  
1909 [1]. Of note, at the beginning of the 20th century 
immunology, as a distinct scientific discipline, did not  
exist [2] and it was not possible to propose any idea for 
explanation of immune system-tumor relationships.  
The subject was not actively followed until the middle  
of the 1950s when it was evident that humoral acquired el-
ements of the immune system are accompanied by equally 
important acquired cellular immunity [2, 3]. 

The early concept of cancer 
immunosurveillance

The role of the immune system in defense against can-
cer has been the subject of hot debates since the 1950s.  
At that time, the importance of cellular components of the 
immune system in mediating allograft rejection was prov-
en [4, 5]. Moreover, in animal models of inbred strains  
of mice, immunity against transplantable tumors induced 
by carcinogens was observed [6]. Soon, antigenic differ-
ences between tumors and normal tissues were defined [7]. 
Based on these facts, the hypothesis of cancer immunosur-

veillance was proposed by Lewis Thomas and Sir Macfar-
lane Burnet in the late 1950s [8, 9]. The core of this concept 
was the statement that “In (…) animals (…) inheritable 
genetic changes must be common in somatic cells and 
a proportion of these changes will represent a step towards 
malignancy. (…) There should be some mechanisms for 
eliminating (…) dangerous mutant cells. (…) It is postulat-
ed that this mechanism is of immunological character” [8]. 
Not much later, Jacques Miller discovered the essential 
role of the thymus in development of cellular immunity 
[10]. He also showed that neonatally thymectomized (im-
munosuppressed) mice failed to reject allo- and xenogene-
ic skin and were more susceptible to carcinogen-induced 
tumor development in comparison to normal mice [11].

The immunosurveillance theory was not generally ac-
cepted. In fact, the significance of the immune system in 
anticancer defense remained unappreciated until the end 
of the last century. Several observations argued against  
the hypothesis. For example, nude (athymic, T-cell de-
ficient) mice did not develop more cancers than normal 
mice [12, 13]. At present, we know that nude mice are 
not totally immunocompromised: their Tgd cell and NK 
cell functions are generally intact [14, 15]. Opponents of 
the hypothesis also showed that in immunoprivileged sites 
such as the anterior chamber of the eye as well as in the 
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brain no excessive number of tumors was observed. In 
deeply immunosuppressed patients after renal transplanta-
tion, increased incidence of tumors was reported, but most 
of these tumors had viral etiology (lymphomas, Kaposi 
sarcomas, and other) [16]. Now, longitudinal observations 
show that in patients after transplantation, regularly tak-
ing immunosuppressive drugs, the incidence of all types 
of cancer is increased [17]. Opponents of the hypothesis 
also pointed out that patients with diseases associated with 
a deficient immune system did not experience increased 
cancer incidence. Some investigators postulated that com-
ponents of the immune system could even promote neo-
plasia and speed up cancer growth. As proof of this they 
cited acceleration of tumor development in mice injected 
with tumor-immune serum in the phenomenon of tumor 
enhancement [18].

By the end of the 20th century, it was generally be-
lieved that the immune system protects against virally 
induced neoplasia but its role in preventing spontaneous 
cancers was controversial. In the landmark review paper 
by Hanahan and Weinberg in 2000, discussing the subject 
of carcinogenesis and tumor development, listing six hall-
marks necessary for tumor growth, no mention was made 
as to the role of the immune system in the process of tumor 
initiation and progression [19].

At the beginning of the 21st century, the advancement 
of knowledge about the mechanisms of carcinogenesis led 
to a renaissance of the concept of cancer immunosurveil-
lance. Renewed interest in this issue resulted from studies 
demonstrating presence of tumor specific antigens in spon-
taneously developing tumors in cancer patients [20] and 
from investigations in animal models showing promotion 
of tumor development in mice with either an interferon 
(IFN)-g or IFN-gR deficit [21-23] or in mice lacking per-
forin [24]. Perforin is an element of T cell and NK cell 
lytic granules, important for target cell killing, including 
tumor cells [25, 26]. Facilitated tumor development was 
also observed in RAG1-/- or RAG2-/- mice [22, 27]. These 
mice are characterized by a lack of recombination activity 
genes, which are necessary for production of T, B, and 
NKT cell receptors for antigens [28].

In 2001, experiments performed in Robert D. Schrei- 
ber’s group confirmed that immunosuppressed mice are 
not only more prone to carcinogen-induced tumorigenesis 
in comparison with immunocompetent mice. The experi-
ments showed that tumors growing in immunocompetent 
vs. immunodeficient mice are also qualitative different. 
Tumor cells from primary tumors growing in immunocom-
petent mice, when injected into naïve wild-type recipients, 
formed progressively growing tumors in 100% of mice. 
In contrast, tumor cells from tumors explanted from im-
munodeficient mice, when injected into naïve wild-type 
animals, formed progressing tumors in half of mice but 
in the other half of mice the tumors finally regressed [22].  
The investigators concluded that carcinogen-induced  

tumors from immunocompetent mice were less immu-
nogenic and “more aggressive” in comparison to tumors 
from immunodeficient mice since the former tumors ex-
perienced an “editing” (shaping) process by the intact 
immune system. In this process, more antigenic nascent 
transformed cells were eliminated [22, 29].

Cancer immunoediting hypothesis
Based on the above-described investigations, the can-

cer immunoediting hypothesis was formulated [29, 30]. 
The hypothesis, at present widely accepted, postulates that 
the immune system – as a whole – controls not only tumor 
growth (in fact, quantity) but also tumor quality. The concept 
proposes that there are three phases of tumor-immune system 
relationships: elimination, equilibrium, and escape (Fig. 1).

In the elimination phase, innate and adaptive arms of 
the immune system work in cooperation to identify and 
destroy transformed cells. These cells are recognized as 
dangerous and are deleted due to phenotypic changes: 
presentation of tumor neoantigens, expression of stress 
ligands, releasing excessive damage-associated molecular 
pattern (DAMP) molecules [31].

Occasionally, some potentially tumorigenic cells sur-
vive the elimination phase and enter the next stage – equi-
librium. In this phase, cancer cells are kept dormant for 
years, decades, and even for the life of the host. It seems 
that, in contrast to the elimination phase, in the equilibrium 
phase innate immunity is not necessary to control latent 
tumor cells. Major mechanisms of protection include adap-
tive elements of the immune system: Th1 cells, CTLs and 
cytokines of type 1 immunity (IL-12, IL-2, IFN-g) [32, 33].

The escape phase is synonymous with clinical tumor 
appearance. This phase results from genetic instability of 
tumor cells favoring development of quickly proliferating 
cells “invisible” to the immune system [34]. In a paral-
lel process, a proangiogenic microenvironment is shaped 
allowing progression of cells to macroscopically iden-
tified lesions. The final step of this phase is acquisition 
of the ability to invade tissues and form metastases [35].  
The escape phase progresses quickly as occasional necrotic 
lesions generate inflammation, stimulating the production 
and release of proangiogenic factors, which promote the 
healing process and further progression of the tumor. In-
dependently, cellular and humoral components (e.g., Treg 
cells, myeloid-derived suppressor cells, IL-10) prevent an 
effective antitumor response and aggravate immune inef-
ficiency in the tumor microenvironment. To summarize,  
the lack of anticancer immune response and the creation of 
an optimal microenvironment is an active process shaped 
by tumor cells and is a result of various mechanisms. 
These mechanisms involve several phenomena [31, 36]. 

Resistance of tumor cells to the cytotoxic effect of cel-
lular and humoral components of the immune system.  
An example is increased expression of prosurvival proteins 
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allowing prevention of cancer cell destruction: BCL-2 
[37], proteinase inhibitor 9 (PI-9, serpin B9, an inhibitor  
of granzyme B-mediated apoptosis) [38] and cellular 
FLICE inhibiting protein (c-FLIP, CFLAR) [39].

Ineffective induction of antitumor response (prim-
ing) and limited recognition of tumor cells by the im-
mune system. These mechanisms include inefficient pre-
sentation of tumor neoantigens by dendritic cells (most of 
them are, in fact, tolerogenic) [40, 41], absence of signals 
mediated by costimulatory molecules, decreased expres-

sion of MHC molecules on neoplastic cells (e.g. due to 
a mutated gene for b2-microglobulin) [41-43], and coun-
teracting the cytotoxic effect of T lymphocytes through 
PDL-1 expression on neoplastic cells and tumor-infiltrat-
ing cells [44].

Formation of an immunosuppressive tumor micro-
environment. Both cellular and soluble mediators create 
a milieu in which the tumor can grow. Tumors, as a rule, 
are infiltrated with cells of evident immunosuppressive 
function. This is often due to chronic inflammation and 

Fig. 1. Relationships between transformed/tumor cells and the protective antitumor response – cancer immunoedit-
ing hypothesis. The process of cancer immunoediting consists of three stages: elimination, equilibrium, and escape.  
In the elimination phase, transformed cells are killed by antitumor effector mechanisms. Some of these cells can sur-
vive and enter the equilibrium phase in which variants of cancer cells are generated that can avoid an immune attack.  
In the escape phase, the tumor grows progressively due to promotion of local immunosuppression which allows  
the antitumor response to be evaded (see details in the text) (modified from [30])
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results from chemotactic factors released from tumor cells 
[45, 46]. The best characterized suppressive cells include 
myeloid-derived suppressor cells (MDSC), regulatory  
T (Treg) cells, and type 2 macrophages [47]. These cells, 
as well as cancer cells, produce and release mediators that 
are effective in inhibiting the immune response. The most 
important are: indoleamine 2,3-dioxygenase (IDO) [48], 
arginase-1 [49], cyclooxygenase-2 (COX-2) [50], and cy-
tokines: transforming growth factor b (TGF-b), interleukin 
(IL)-10, and vascular endothelial growth factor (VEGF) 
[51, 52]. The latter additionally promotes tumor develop-
ment via stimulation of angiogenesis. Certain mediators, 
such as TGF-b and VEGF, are typical markers of chronic 
inflammation and are characteristic for the physiological 
process of wound healing [53], promoting development of 
Treg cells responsible for prevention of autoimmunity [54, 
55]. Recent studies have also shown that the immunosup-
pressive effect of the tumor microenvironment may be due 
to limited availability of nutrients (glucose deprivation) 
and an excessive amount of tumor cell-derived metabolites 
(e.g., lactate, fatty acids). This imbalance may negatively 
affect differentiation, proliferation, and function of effector 
tumor-infiltrating T lymphocytes (TILs) [56, 57].

Tumor immune landscape  
and the Immunoscore concept

In clinical oncology, a positive correlation has been 
observed for years between the intensity of cellular infiltra-
tions in the tumor and the prognosis. Experiments in mice 
that provided evidence supporting the role of adaptive 
immunity in cancer immunoediting were the rationale for 
in-depth clinical studies evaluating immune components 
in human tumors and looking for predictive and prognos-
tic values of immune markers in the tumor. Early detailed 
studies were carried out, among others, on melanoma [58], 
esophageal cancer [59], and on ovarian cancer [60, 61]. 
Sato et al. [61] performed an immunohistochemical analy-
sis of cancer tissue sections and found that the presence of 
intratumoral (intraepithelial) CD4+ T cells and high CD8+ 
T cell/Treg ratio had favorable prognostic value. The most 
comprehensive investigations have been conducted, how-
ever, on colorectal cancer by the group of French investi-
gators headed by Jerome Galone and Franck Pages. They 
used immunohistochemical staining and gene expression 
profiling for characterization of tumor infiltrating im-
mune cells and type of adaptive immunity in the tumor. 
They found that Th1 type of immunity and high density 
of CD3+, CD8+, and CD54RO+ (memory marker) cells, 
both in the center of the tumor and in the invasive mar-
gin, predicted good clinical outcome [62]. Results of the 
study became the basis for introducing the term immune 
contexture in oncology in the first decade of this century. 
This term defines the immune landscape in the tumor and 
includes four characteristic features: 1) quality of tumor 

infiltrating lymphocytes, 2) density of these cells in the 
tumor, 3) orientation of the immune response in the tumor, 
and 4) localization of components of the immune system 
in tumor and paratumor areas and presence or absence  
of tertiary lymphoid structures [63].

The obvious consequence of research on the immune 
contexture in tumors was to define the most optimal prog-
nostic immune parameters and introduction of the term 
“Immunoscore”. The key parameters in the Immuno- 
score were amounts of cytotoxic lymphocytes (CTLs) 
CD3+CD8+, CD45RO+ cells, both in the tumor center and 
at the invasive margin. In general, Immunoscore = 0 char-
acterized low density of the above-mentioned T cells in the 
center and periphery of the tumor, and Immunoscore = 4 
defined high density of these cells in both regions [64, 65]. 
The Immunoscore was defined based on immunostained, 
formalin-fixed, paraffin-embedded slides.

In research by Pages et al. [66], strong prognostic val-
ue of the Immunoscore was demonstrated in patients with 
localized, early stages colorectal cancer (stages I and II, ac-
cording to the TNM classification) [66]. Five-year surviv-
al of patients with the highest Immunoscore (high density  
of CD8+ and CD45RO+ cells in the center of the tumor and 
in the invasive margin) was 3 times higher when compared 
to patients with Immunoscore = 0 (86% vs. 28%). These  
observations were confirmed in international studies aimed at 
assessing the prognostic value of T-cell density in the tumor 
and cytotoxic T cell counts in patients with stage I, II, and III 
colon cancer [67]. In these studies, in which 14 oncological 
centers were included from different countries, CD3+ and 
CD8+ T cells were determined in the core tumor and invasive 
margin regions, based on paraffin sections processed by im-
munochemistry, by image analysis software with a dedicated 
Immunoscore module. CD3 and CD8 markers were chosen 
because previous investigations showed that these markers 
of tumor-infiltrating cells were the optimal combination for 
prognostic purposes. A three-tier categorization system was 
applied (Immunoscore: low, intermediate, and high). It was 
found that patients with a high Immunoscore had prolonged 
overall survival and disease-free survival (DFS). DFS at  
5 years was observed in 75% of patients with a high Immu-
noscore, 70% of patients with an intermediate Immunoscore, 
and 57% of patients with a low Immunoscore. Of note, im-
provement of prediction for overall survival was observed 
when the Immunoscore was added to a model that combined 
all clinical variables [67].

Significance of the immune contexture  
in cancer prognosis: suggestion to improve 
the classification of tumor staging

The current assessment of tumor staging and spread is 
based on the tumor-node-metastasis (TNM) classification. 
This classification has strong prognostic significance and 
has been used in clinical oncology for decades. However, 
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due to accepting the significant role of the immune sys-
tem in cancer surveillance and development, there have 
been attempts to improve the TNM staging system. Pages 
and Galon proposed to introduce an “Immune” component 
(from the Immunoscore) to classic TNM staging, resulting 
in a new classification – TNM-Immune [67]. They sug-
gested that determining the immune contexture in routine 
histopathological samples may be helpful in prognosis 
of cancer progression and could also be beneficial from 
a therapeutic point of view [64, 68, 69]. Their suggestions 
are in line with the current trend of defining an optimal im-
mune landscape in the tumor, predicting a good response 
to immunotherapy with monoclonal antibodies from the 
group of immune check-point inhibitors [70].

However, there are several obstacles to the broad ac-
ceptance of the proposed classification (TNM-Immune). 
The most problematic issue concerns extremely heteroge-
neous immune infiltrates in the tumor microenvironment, 
especially in advanced forms of cancer (stages III and IV) 
[71-73]. Some tumors are heavily infiltrated while in others 
the density of infiltrating cells is low [74] and includes both 
“good” elements (cytotoxic T lymphocytes, NK cells) and 
“bad” components (e.g., myeloid-derived suppressor cells or 
M2 macrophages) [75, 76]. To complicate the picture, some 
“good” cells may be inactive (exhausted) and non-function-
al. Another question is the problematic protective role of 
the immune system in the most advanced stages of tumors 
and the interrelationship between the extracellular matrix in 
cancer and components of the immune system [77]. Very 
reliable and in-depth research concerning lung cancer, de-
scribing the immune landscape from preneoplasia to inva-
sive adenocarcinoma, demonstrated gradual loss of immune 
effectiveness of antitumor defense, as the cancer progresses. 
These studies clearly show that in the escape phase of the 
process of cancer immunoediting, the tumor actively sculp-
tures and shapes immunity, causing non-functionality of 
protective components of the immune system [78] (Fig. 1).

Conclusions
At present, the Immunoscore is unlikely to be widely 

used to define tumor stage of progression and as a prog-
nostic indicator in clinical oncology. Resolving some 
problems can be difficult: time-consuming histochemical 
techniques, the need to incur additional costs, interlabora-
tory non-reproducibility of assays, etc. However, due to 
diagnostic advances and computed tomography screening, 
more and more tumors will be detected in the future in 
early stages of development [79, 80]. In these cases, in ad-
dition to regular monitoring of tumor behavior, assessment 
of the intratumoral immune milieu and introducing the Im-
munoscore staging could be helpful in optimal prediction 
of therapeutic strategies [81, 82].
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