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1. Introduction  

Gauss's law is a mathematical model that can be used to obtain the electric fields of certain 

charge distributions with a high degree of symmetry, such as cylinders, spheres and infinite 

wires. 

It is therefore a specialized method, but it is very useful for this class of problems to which it 

can be applied. At this stage, Gauss's law will help us to better understand the shapes of 

electric fields due to continuous charge distributions. 

2. Definitions  

A- Surface vector: The surface vector  𝑑𝑠⃗⃗⃗⃗  is a vector carried by the unit vector normal 

to the surface.  

 

B- Flux of a vector field: The elementary flux dΦ is, 

𝑑∅ = �⃗� . 𝑑𝑠⃗⃗⃗⃗ ⇒ ∅ = ∬�⃗� . 𝑑𝑠⃗⃗⃗⃗ = ∬�⃗� . 𝑑𝑠. �⃗⃗�  

With  𝑑𝑠⃗⃗⃗⃗ = 𝑑𝑠. �⃗⃗�  

The unit of flow is the Weber (Wb). 

3. Electric field flow through a closed surface  

Let S be an arbitrary closed surface and q be the charge enclosed within the surface S. The 

elementary electric field flux created by the charge q across the closed surface S is given by: 

𝑑∅ = �⃗� . 𝑑𝑠⃗⃗⃗⃗ = 𝐸. 𝑑𝑠. cos 𝛼  

α : the angle between  �⃗�  and �⃗⃗�  (𝑑𝑠⃗⃗⃗⃗ ) 

The electric field  �⃗� =
𝑘𝑞

𝑟2 �⃗�  and  𝑑∅ =
𝑘𝑞

𝑟2 �⃗�  . 𝑑𝑠⃗⃗⃗⃗ = 𝑘𝑞
�⃗⃗�  .𝑑𝑠⃗⃗ ⃗⃗  

𝑟2  

�⃗�  . 𝑑𝑠⃗⃗⃗⃗ = 𝑑𝑠 |�⃗� | cos 𝛼 

𝑑𝑠⃗⃗⃗⃗  

�⃗⃗�  
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The electric field will be :   

  �⃗� =
𝑘𝑞

𝑟2
�⃗�  and  ∅ = ∯

𝑘𝑞

𝑟2
�⃗�  . 𝑑𝑠⃗⃗⃗⃗ = ∯𝑘𝑞

𝑑𝑠.𝑐𝑜𝑠𝛼 

𝑟2
 

𝑤𝑖𝑡ℎ 
𝑑𝑠. 𝑐𝑜𝑠𝛼 

𝑟2
= 𝑑Ω = 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒 

Note: The unit of the solid angle is the steradian. 

Since the area of a sphere of radius 𝑅 is S= 4πR², we deduce that the largest measurable solid 

angle, which corresponds to an object covering the entire sphere, is 4π steradians. 

Ω=4π= the solid angle to see all of space 

So    ∅ =  
𝑞

4𝜋𝜀0
. 4𝜋 =

𝑞

𝜀0
 

In the case of several point charges, the flux is written as: 

∅ = ∯�⃗� . 𝑑𝑠⃗⃗⃗⃗ =   
∑Qint

ε0
 

4. Gauss Theorem 

a- Statement of Gauss Theorem 

« The flux inside a closed surface called a Gauss surface is equal to the sum of the net 

charges Qint inside this surface divided by the dielectric permittivity in vacuum ε0 » 

∅ = ∯ �⃗⃗� . 𝒅𝒔⃗⃗ ⃗⃗  =   
∑𝐐𝐢𝐧𝐭

𝛆𝟎
 

 

 



Chapter II: Gauss's theorem 
 

Ms Hadjou Bélaid Z 5 

 

b. The steps involved in applying Gauss's theorem 

 Choosing a coordinate system 

 Study the invariance of the system 

 Study symmetry 

 Choice of Gaussian surface; the table shows the different cases where a cylinder is 

chosen as the SG and the cases where a sphere is chosen as the SG: 

 

 Possible cases Possible cases Possible cases Possible cases 

GS is a 

cylinder 

An infinite 

wire 

An infinite 

plane 

A surface or 

volume 

charged 

cylinder 

Two or more 

cylinders 

GS is a sphere A surface- or 

volume-

charged sphere 

Two or more 

spheres 

  

 

c. GT for different continuous charge distribution : 

 Linear distribution (dq= 𝛌𝐝𝐥)   ∅ =  ∯ �⃗� . 𝑑𝑠⃗⃗⃗⃗ =   
∫ λdl

ε0
 

 Surface distribution (dq= 𝛔𝐝𝐬)   ∅ = ∯ �⃗� . 𝑑𝑠⃗⃗⃗⃗ =   
∫σds

ε0
 

 Volume distribution (dq= 𝛒𝐝𝐯)   ∅ = ∯ �⃗� . 𝑑𝑠⃗⃗⃗⃗ =   
∫ρdv

ε0
 

5. Application examples 

5.1. Case of an infinite wire 

- Choice of coordinate system: 

If we zoom in on the wire, we'll have a cylinder with an infinitely small radius, so we use 

cylindrical coordinates.  
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- Study of invariance  

We study invariance with respect to ρ, θ and z (cylindrical coordinates).  

 If we change the angle θ, M rotates around the wire, but the electric field does not 

change.  

 If we change z, M translates along (Oz) and since the wire is infinite, we still have the 

same wire, so �⃗�  remains invariant remains invariant. 

 If we change ρ, M can move away from or towards the wire, so �⃗�  does not remain the 

same. So  �⃗�  depends only on ρ. 

 

- Study of symmetry 

In this case, we have two planes of symmetry: 

1. The plane intersecting the infinite wire 

horizontally (𝑢𝜌⃗⃗⃗⃗ , 𝑢𝜃⃗⃗ ⃗⃗ ) 

2. The plane intersecting the infinite wire 

vertically (𝑢𝜌⃗⃗⃗⃗ , 𝑢𝑧⃗⃗⃗⃗ ) 

So the axis of symmetry is the intersection of the 

two planes, this is the axis following 𝑢𝜌⃗⃗⃗⃗  so the electric field is following 𝑢𝜌⃗⃗⃗⃗ . 

- Choice of Gauss surface 

The Gaussian surface is a cylinder of radius r and and height h. Because of symmetry, the 

field follows the radius ρ, so we say the field is said to be "radial" and constant in the 

Gaussian surface (�⃗�   depends only on ρ). 

According to Gauss's Theorem: ∅ =    ∬ �⃗� . 𝑑𝑠 ⃗⃗ ⃗⃗  ⃗ =
∑𝑄𝑖𝑛𝑡

𝜀0
  

   ∅ = ∬𝐸 ⃗⃗  ⃗. 𝑑𝑠 ⃗⃗ ⃗⃗  ⃗  = ∬𝐸 .⃗⃗⃗⃗ 𝑑𝑠 𝑏𝑎𝑠𝑒 1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + ∬𝐸.⃗⃗  ⃗ 𝑑𝑠𝑙𝑎𝑡 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ∬𝐸 .⃗⃗⃗⃗ 𝑑𝑠 𝑏𝑎𝑠𝑒 2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  

 𝐸    ⃗⃗⃗⃗⃗⃗  ⃗┴  𝑑𝑠 𝑏𝑎𝑠𝑒
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⟹ ∬𝐸.⃗⃗  ⃗ 𝑑𝑠𝑙𝑎𝑡 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 0  

�⃗�  ∥ 𝑑𝑠𝑙𝑎𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  so : ∅ = ∬𝐸.⃗⃗  ⃗ 𝑑𝑠𝑙𝑎𝑡

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∬𝐸. 𝑑𝑠𝑙𝑎𝑡=𝐸. ∫ 𝑑𝑠𝑙𝑎𝑡 = 𝐸. 𝑆𝑙𝑎𝑡 
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so ∅ = 𝐸 2𝜋𝑟h 

Let's find Qint, the elementary charge is : 𝑑𝑞 = 𝜆𝑑𝑙 ⇒𝑄 = 𝜆 ∫ 𝑑𝑙 = 𝜆ℎ
ℎ

0
 

𝐸2𝜋𝑟ℎ =
𝜆ℎ

𝜀0
⇒ 𝐸 =

𝜆

2𝜋𝑟𝜀0
 

5.1. Case of an infinite cylinder 

- Choice of coordinate system 

Since we're studying a cylinder, we use cylindrical coordinates. 

- Study of invariance  

It's the same as the wire. The electric field does not change by varying θ and z, however, �⃗�   

depends on ρ. 

- Study of symmetry 

 In this case, too, we have two planes of symmetry: 

The plane intersecting the infinite wire horizontally (𝑢𝜌⃗⃗⃗⃗ , 𝑢𝜃⃗⃗ ⃗⃗ ) and 

The plane intersecting the infinite wire vertically (𝑢𝜌⃗⃗⃗⃗ , 𝑢𝑧⃗⃗⃗⃗ ) 

So the axis of symmetry is the intersection of the two planes  

It's the axis along 𝑢𝜌⃗⃗⃗⃗  so the electric field is along 𝑢𝜌⃗⃗⃗⃗ . 

- Choice of Gauss surface 

The Gaussian surface is a cylinder of radius r and height h.  

Because of symmetry, the radial field is constant in the Gaussian surface. 

 According to Gauss's Theorem: ∅ =    ∬ �⃗� . 𝑑𝑠 ⃗⃗ ⃗⃗  ⃗ =
∑𝑄𝑖𝑛𝑡

𝜀0
  

   ∅ = ∬𝐸 ⃗⃗  ⃗. 𝑑𝑠 ⃗⃗ ⃗⃗  ⃗  = ∬𝐸 .⃗⃗⃗⃗ 𝑑𝑠 𝑏𝑎𝑠𝑒 1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + ∬𝐸.⃗⃗  ⃗ 𝑑𝑠𝑙𝑎𝑡 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ∬𝐸 .⃗⃗⃗⃗ 𝑑𝑠 𝑏𝑎𝑠𝑒 2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  

 𝐸    ⃗⃗⃗⃗⃗⃗  ⃗┴  𝑑𝑠 𝑏𝑎𝑠𝑒
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⟹ ∬𝐸.⃗⃗  ⃗ 𝑑𝑠𝑏𝑎𝑠𝑒 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 0  

�⃗�  ∥ 𝑑𝑠𝑙𝑎𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  so : ∅ = ∬𝐸.⃗⃗  ⃗ 𝑑𝑠𝑙𝑎𝑡

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∬𝐸. 𝑑𝑠𝑙𝑎𝑡=𝐸. ∫ 𝑑𝑠𝑙𝑎𝑡 = 𝐸. 𝑆𝑙𝑎𝑡 

Then ∅ = 𝑬 𝟐𝝅𝒓𝐡=Qint/ε0 

ρ 

θ 

z 

(𝑢𝜌⃗⃗⃗⃗ , 𝑢𝜃⃗⃗ ⃗⃗ ) 

(𝑢𝜌⃗⃗⃗⃗ , 𝑢𝑧⃗⃗⃗⃗ ) 
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The cylinder can be either surface or volume charged. 

Important note: 

The choice of Gaussian surface for a cylinder charged either on the surface or in volume, or 

two cylinders (one charged in volume and the other charged on the surface, or both charged 

on the surface...) is always a cylinder of radius r and height h. The flux calculation will be the 

same, only the Qint charge will vary according to the given distribution. 

a- For a surface-charded cylinder 

- The electric field  

We have tos cases ;  

1st case 𝑟 < 𝑅  we take the Gauss surface inside the 

charged cylinder to calculate the internal field. Then, in 

a surface distribution, we have : 

𝑄𝑖𝑛𝑡 = 0 ⟹ 𝑬𝟏 = 𝑬𝒊𝒏𝒔 = 𝟎  

2nd case r≥ 𝐑    we take the Gauss surface outside the 

charged cylinder to calculate the field outside. 

 𝑑𝑞 = 𝜎𝑑𝑠 ⇒ 𝑄𝑖𝑛𝑡 = 𝜎𝑆 = 𝜎2𝜋𝑅ℎ     

So 𝐸22𝜋𝑟ℎ =
𝜎2𝜋𝑅ℎ

𝜀0
⇒ 𝑬𝟐 = 𝑬𝒐𝒖𝒕 =

𝝈𝑹

𝜺𝟎𝒓
 

- The  potentiel  

𝐸 ⃗⃗  ⃗ = −𝑔𝑟𝑎𝑑 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑉 𝑤𝑖𝑡ℎ 𝐸 = 𝐸(𝑟) ⟹ 𝐸 = −
𝑑𝑉

𝑑𝑟
𝑠𝑜 𝑉 = −∫𝐸. 𝑑𝑟 

1st case 𝑟 < 𝑅  𝑤𝑒 ℎ𝑎𝑣𝑒  𝐸1 = 0 ⟹ 𝑉1 = 𝑪𝟏  

2nd case r≥ 𝐑 

𝑬𝟐 =
𝝆𝑹

𝜺𝟎

𝟏

𝒓
⟹ 𝑉2 = −

𝝈𝑅

𝜀0
∫

1

𝑟
. 𝑑𝑟 = −

𝝈𝑹

𝜺𝟎
𝒍𝒏𝒓 + 𝑪𝟐  

Note: In the case of a cylinder, the constants C1 and C2 cannot be calculated because the 

potential at infinity is non-zero. 
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b. Volume-charged cylinder 

We have tow cases. 

- The electric field  

1st case   𝑟 < 𝑅 we take the Gauss surface inside the charged cylinder to calculate the internal 

field. Then, in a volume distribution dq= ρdV, we have : 

𝑄𝑖𝑛𝑡 = ∭𝜌𝑑𝑣 = 𝜌∫ 2𝜋ℎ𝑟𝑑𝑟 = 𝜌𝜋ℎ𝑟2
𝑟

0

⇒ 𝐸2𝜋𝑟ℎ =
𝜌𝜋ℎ𝑟2

𝜀0
 

Because 𝑉 = 𝜋ℎ𝑟2 ⇒𝑑𝑉 = 2𝜋ℎ𝑟𝑑𝑟 

⟹ 𝑬𝟏 = 𝑬𝒊𝒏𝒔 =
𝝆

𝟐𝜺𝟎
𝒓  

2nd case r≥ 𝐑     

we take the Gauss surface outside the loaded cylinder to calculate E2 =Eins, so we integrate 

between 0 and R (because Qint lies on the cylinder of radius R). 

𝑄𝑖𝑛𝑡 = ∭𝜌𝑑𝑣 = 𝜌∫ 2𝜋ℎ𝑟𝑑𝑟 = 𝜌𝜋ℎ𝑅2
𝑅

0

⇒ 𝐸2𝜋𝑟ℎ =
𝜌𝜋ℎ𝑅2

𝜀0
 

 ⟹ 𝑬𝟐 =
𝝆𝑹𝟐

𝟐𝜺𝟎

𝟏

𝒓
  

- The potentiel  

𝐸 ⃗⃗  ⃗ = −𝑔𝑟𝑎𝑑 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑉 𝑤𝑖𝑡ℎ 𝐸 = 𝐸(𝑟) 

⟹ 𝐸 = −
𝑑𝑉

𝑑𝑟
𝑠𝑜 𝑉 = −∫𝐸. 𝑑𝑟 (this calculation is valid for any cylinder). 

𝑉1 = −∫𝐸1. 𝑑𝑟 ⟹ 𝑉1 =
𝜌

2𝜀0
∫ 𝑟𝑑𝑟 = −

𝝆

𝟒𝜺𝟎
𝒓𝟐 + 𝑪𝟏  

𝑉2 = −∫𝐸2. 𝑑𝑟 = −
𝜌𝑅2

2𝜀0
∫

1

𝑟
. 𝑑𝑟 = −

𝝆𝑹𝟐

𝟐𝜺𝟎
𝒍𝒏𝒓 + 𝑪𝟐  

 

 

 

 

R 

 r2 r1 
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5.3. Case of a sphere 

- Choice of coordinate system 

Since we're studying a cylinder, we use spherical coordinates. 

- Study of invariance  

If we change the angle θ or the angle φ, the electric field �⃗�   

does not change, but by varying r the electric field �⃗�  varies �⃗� . 

- Study of symmetry 

We have two planes of symmetry: 

The plane intersecting the infinite wire horizontally (𝑢𝑟⃗⃗⃗⃗ , 𝑢𝜃⃗⃗ ⃗⃗ ) and the plane intersecting the 

infinite wire vertically (𝑢𝑟⃗⃗⃗⃗ , 𝑢𝜑⃗⃗⃗⃗  ⃗). 

So the axis of symmetry is the intersection of the two planes,  

This is the axis along  𝒖𝒓⃗⃗ ⃗⃗  so the electric field is along 𝒖𝒓⃗⃗ ⃗⃗  

The field is then said to be radial 

- Choosing the Gaussian surface 

The Gaussian surface is a sphere with center O and radius 

r. Due to symmetry, the field is radial and constant in the 

Gaussian surface. 

∅ = ∯�⃗� . 𝑑𝑠⃗⃗⃗⃗ =
∑𝑄𝑖𝑛𝑡

𝜀0
 

𝐸    ⃗⃗⃗⃗⃗⃗  ⃗ ∕∕ 𝑑𝑠⃗⃗⃗⃗  : 

 So :   ∯�⃗� . 𝑑𝑠⃗⃗⃗⃗ =∬𝐸. 𝑑𝑠 = 𝐸 ∬𝑑𝑠 = 𝐸. 𝑆 = 𝐸4𝜋𝑟2   ⇒𝑬𝟒𝝅𝒓𝟐 =
∑𝑸𝒊𝒏𝒕

𝜺𝟎
  

Important note: 

The choice of Gaussian surface for a sphere charged either on the surface or in volume, or two 

spheres (one charged in volume and the other charged on the surface, or both charged on the 

surface...) is always a sphere of radius r and center O. And the flux calculation will be the 

same, only the Qint charge will vary according to the distribution. 

�⃗�  

𝑗  

m 

𝑀 

𝑢𝑟⃗⃗⃗⃗  

𝑢𝜃⃗⃗ ⃗⃗  

X 

Y 

o 

r 
𝝋 

𝑖  
𝜽 

z 

𝑢𝜑⃗⃗⃗⃗  ⃗ 

(𝑢𝑟⃗⃗⃗⃗ , 𝑢𝜃⃗⃗ ⃗⃗ ) 

(𝑢𝑟⃗⃗⃗⃗ , 𝑢𝜑⃗⃗⃗⃗  ⃗) 
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a- Surface-charged sphere  

- The electrostatic field E(r) at any point in space.  

We have 2 cases :          

1st case r<R      

The Gaussian surface is inside the sphere to calculate E1==Eint then: 

𝑄𝑖𝑛𝑡 = 0 ⇒ 𝑬𝟏 = 𝟎     

2nd case r≥ 𝐑    

The Gauss surface is outside the sphere to calculate E2=Eouts 

  𝑑𝑞 = 𝜎𝑑𝑠 ⇒ 𝑄𝑖𝑛𝑡 = 𝜎4𝜋𝑅2     

So  𝐸24𝜋𝑟2 =
𝜎4𝜋𝑅2

𝜀0
⇒ 𝑬𝟐 =

𝝈𝑹𝟐

𝜺𝟎𝒓𝟐
 

- The electrostatic potential V(r) at any point in space.  

�⃗� = −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑣 ⇒ 𝐸 = −
𝑑𝑣

𝑑𝑟
     so    𝑣 = −∫𝐸𝑑𝑟  

1st case r<R      𝐸1 = 0 ⇒ 𝑣1 = 𝐶1     

2nd case r≥ 𝐑     𝐸2 =
𝜎𝑅2

𝜀0𝑟2 ⇒ 𝑣2 = −𝜎
𝜎𝑅2

𝜀0
∫

𝑑𝑟

𝑟2 =
𝜎𝑅2

𝜀0𝑟
+ 𝐶2     

Calculating constants : 

 The potential at infinity is zero (vꝏ=0) so lim
𝑟→∞

𝑣 = 0  so C2=0 then  𝒗𝟐 =
𝝈𝑹𝟐

𝜺𝟎𝒓
  

 The potential is a continuous function in R so 𝑣1(𝑅) = 𝑣2(𝑅)  

then 𝑣1 = 𝐶1 =
𝜎𝑅2

𝜀0𝑅
 so 𝒗𝟏 =

𝝈𝑹

𝜺𝟎
 

- Plot the graphs E(r) and V(r) as a function of r : 

 

R 

r1 

r2 E1 

E2 

R 

r1 

r2 

V2 

V1 
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b- Sphere charged in volume 

1- The electrostatic field E(r) at any point in space.  

We have 2 cases: 

1st case r<R  

𝑑𝑞 = 𝜌𝑑𝑣 = 𝜌4𝜋𝑟2𝑑𝑟 ⇒ 𝑄𝑖𝑛𝑡 = 𝜌 ∭𝑑𝑣 =𝜌4𝜋 ∫ 𝑟2𝑑𝑟
𝑟

0   

We integrate between 0 and r because the Qint charge is located 

 in the volume of the Gauss sphere of radius r. 

⇒ 𝑄𝑖𝑛𝑡 = 𝜌  
4

3
𝜋𝑟3

        so  (∗) ⇒ 𝐸1 =
𝜌  

4

3
𝜋𝑟3

4𝜋𝑟2𝜀0
 then   𝑬𝟏 =

𝝆

𝟑𝜺𝟎
𝒓 = 𝑬𝒊𝒏𝒔  

2nd case r≥ 𝐑  

𝑑𝑞 = 𝜌𝑑𝑣 = 𝜌4𝜋𝑟2𝑑𝑟 ⇒ 𝑄𝑖𝑛𝑡 = 𝜌 ∭𝑑𝑣 =𝜌4𝜋 ∫ 𝑟2𝑑𝑟
𝑅

0   

We integrate between 0 and R because the Qint charge is located in the volume of the sphere 

of radius R. 

So  𝑄𝑖𝑛𝑡 = 𝜌  
4

3
𝜋𝑅3

  

(∗) ⇒ 𝐸2 =
𝜌  

4
3 𝜋𝑅3 

4𝜋𝑟2𝜀0
    𝑠𝑜   𝑬𝟐 =

𝝆  𝑹𝟑 

𝟑𝜺𝟎𝒓𝟐
= 𝑬𝒐𝒖𝒕 

2- The electric potential v(r) at any point in space. 

�⃗� = −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑣 ⇒ 𝐸 = −
𝑑𝑣

𝑑𝑟
     So    𝑣 = −∫𝐸𝑑𝑟  

1st case r<R: 

𝐸1 =
𝜌

3𝜀0
𝑟 ⇒ 𝑣1 = −

𝜌

3𝜀0
∫ 𝑟𝑑𝑟  so        𝒗𝟏 = −

𝝆

𝟔𝜺𝟎
𝒓𝟐 + 𝑪𝟏  

2nd case r≥ 𝐑 : 

𝐸2 =
𝜌  𝑅3 

3𝜀0𝑟2  ⇒ 𝑣2 = −
𝜌  𝑅3 

3𝜀0
∫

1

𝒓𝟐 𝑑𝑟   so   𝒗𝟐 =
𝝆  𝑹𝟑 

𝟑𝜺𝟎

𝟏

𝒓
+ 𝑪𝟐  

Calculating constants : 

R 

r1 

r2 

E2 

E2 
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The potential at infinity is zero (vꝏ=0) so lim
𝑟→∞

𝑣 = 0  then 𝒗𝟐 =
𝝆  𝑹𝟑 

𝟑𝜺𝟎

𝟏

𝒓
 

The potential is a continuous function in R, so 𝒗𝟏(𝑹) = 𝒗𝟐(𝑹) 

𝜌  𝑅3 

3𝜀0

1

𝑅
= −

𝝆

𝟔𝜺𝟎
𝑅2 + 𝐶1 ⇒ 𝐶1 =

𝜌  𝑅2 

𝜀0
(
1

3
+

1

6
) =

𝜌  𝑅2 

2𝜀0
  

so  𝒗𝟏 = −
𝝆  𝒓𝟐 

𝟔𝜺𝟎
+

𝝆  𝑹𝟐 

𝟐𝜺𝟎
 

5.4. Case of an infinite plan 

To find the electric field in an infinite plane,  

we use Gauss's theorem. 

The Gaussian surface is a cylinder intersecting the plane. 

The cylinder has radius r and height h.  

For reasons of symmetry, the field is radial and constant at any point on the Gaussian surface.  

In the Gaussian surface.  

∅ = ∯�⃗� . 𝑑𝑆⃗⃗⃗⃗ =
∑𝑄𝑖𝑛𝑡

𝜀0
 

∅ = ∅𝑠𝑏𝑎𝑠𝑒1 + ∅𝑆𝑙𝑎𝑡 + ∅𝑠𝑏𝑎𝑠𝑒2 = ∬�⃗� . 𝑑𝑆𝐵1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ +∬�⃗� . 𝑑𝑆𝐵2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + ∬�⃗� . 𝑑𝑆𝐿
⃗⃗ ⃗⃗ ⃗⃗   

= 2∬𝐸. 𝑑𝑆𝑏𝑎𝑠𝑒 = 2𝐸. 𝑆𝑏𝑎𝑠𝑒  

⇒ ∅ = 2𝐸. 𝑆𝑏𝑎𝑠𝑒 =
∑𝑄𝑖𝑛𝑡

𝜀0
  (1) 

𝑑𝑞 = 𝜎𝑑𝑠 ⇒ 𝑄𝑖𝑛𝑡 = 𝜎 ∬𝑑𝑠 = 𝜎𝑆𝑏𝑎𝑠𝑒  

(1)⇒ 2𝐸. 𝑆𝑏𝑎𝑠𝑒 =
𝜎𝑆𝑏𝑎𝑠𝑒

𝜀0
  so      𝑬 =

𝝈

𝟐𝜺𝟎
  

Then lim
𝑅→∞

|𝐸| =
𝜎

2ε0
 and the field for an infinite plane is identical. 

 𝑑𝑠𝐵2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

𝑑𝑠𝐿
⃗⃗ ⃗⃗ ⃗⃗  

�⃗�  �⃗�  �⃗�  

�⃗�  �⃗�  
�⃗�  


