

SW N° 02 Gauss's theorem

Exercise 1:

Let be two concentric spheres with center O and radius R_1 , R_2 such that $R_1 < R_2$. The sphere of radius R_1 is volume-charged with a constant volume charge **density** ρ . The second of radius R_2 is surface-charged with a constant surface charge **density** σ .

1- Using Gauss's theorem find the expression for the electrostatic field E(r) at any point in space.

2- Deduce the expression of the electric potential V(r) at any point in space.

3- Plot the curves of E(r) and V(r).

Exercise 2:

Let be two concentric spheres of center O of radius R_1 and R_2 respectively such that $R_1 < R_2$. Using GAUSS' theorem:

1- Calculate the electrostatic field at any point in space for a volume distribution of charges uniformly distributed between these two spheres.

2- Deduce the electric potential at any point in space.

Exercise 3:

A cylinder of infinite height and radius R is surface-charged with a constant surface charge **density** σ . On the axis of this cylinder we place a conducting wire of infinite length and constant linear charge **density** λ .

1- Write the expression for the electric flux through the Gauss surface.

2- Calculate, at any point in space, the electrostatic field E(r) created by this distribution of charges.

3- Deduce the expression of λ so that the field outside the cylinder is zero.

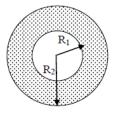
Exercise 4:

Consider two infinitely long coaxial cylinders of radius R_1 and R_2 such that $R_1 < R_2$. The first of radius R_1 , charged with surface **density** + σ ; and the second of radius R_2 , charged with surface **density** - σ .

1- Calculate the electrostatic field at any point in space, Plot the graphs E(r) as a function of r.

2- Deduce the electrostatic potential.

Supplementary exercises :


Exercise 1:

Using Gauss's theorem, calculate the electrostatic field at any point in space for a volumetric distribution of charge uniformly distributed **between two coaxial cylinders** of infinite lengths and radius R_1 , R_2 respectively such that $R_1 < R_2$. Deduce the potential at any point in space.

Exercise 2 :

A sphere of center O and radius R charged in volume with <u>a variable</u> volume charge density $\rho = A/r$ positive.

- 1- Applying GAUSS' theorem, calculate the electric field at any point in space.
- 2- Deduce the electric potential at any point in space.
- 3- Plot the graphs E(r) and V(r) as a function of r.

