$1^{\text {st }}$ year LMD-M and MI

SW N 02 Gauss's theorem

Exercise 3:

Let be two concentric spheres with center O and radius $\mathrm{R}_{1}, \mathrm{R}_{2}$ such that $\mathrm{R}_{1}<\mathrm{R}_{2}$. The sphere of radius R_{1} is volume-charged with a constant volume charge density ρ. The second of radius R_{2} is surface-charged with a constant surface charge density $\boldsymbol{\sigma}$.
1- Using Gauss's theorem find the expression for the electrostatic field $\mathrm{E}(\mathrm{r})$ at any point in space.
2- Deduce the expression of the electric potential $\mathrm{V}(\mathrm{r})$ at any point in space.
3 - Plot the curves of $\mathrm{E}(\mathrm{r})$ and $\mathrm{V}(\mathrm{r})$.

Exercise 2:

Let be two concentric spheres of center O of radius R_{1} and R_{2} respectively such that $\mathrm{R}_{1}<\mathrm{R}_{2}$. Using GAUSS' theorem:
1- Calculate the electrostatic field at any point in space for a volume distribution of charges uniformly distributed between these two spheres.
2- Deduce the electric potential at any point in space.

Exercise 3:

A cylinder of infinite height and radius R is surface-charged with a constant surface charge density $\boldsymbol{\sigma}$. On the axis of this cylinder we place a conducting wire of infinite length and constant linear charge density λ.
1- Write the expression for the electric flux through the Gauss surface.
2- Calculate, at any point in space, the electrostatic field $\mathrm{E}(\mathrm{r})$ created by this distribution of charges.
3- Deduce the expression of λ so that the field outside the cylinder is zero.

Exercise 4:

Consider two infinitely long coaxial cylinders of radius R_{1} and R_{2} such that $\mathrm{R}_{1}<\mathrm{R}_{2}$. The first of radius R_{1}, charged with surface density $+\boldsymbol{\sigma}$; and the second of radius R_{2}, charged with surface density - $\boldsymbol{\sigma}$.
1- Calculate the electrostatic field at any point in space, Plot the graphs $E(r)$ as a function of r.
2 - Deduce the electrostatic potential.

Supplementary exercises :

Exercise 1:

Using Gauss's theorem, calculate the electrostatic field at any point in space for a volumetric distribution of charge uniformly distributed between two coaxial cylinders of infinite lengths and radius $\mathrm{R}_{1}, \mathrm{R}_{2}$ respectively such that $\mathrm{R}_{1}<\mathrm{R}_{2}$. Deduce the potential at any point in space.

Exercise 2:

A sphere of center O and radius R charged in volume with a variable volume charge density $\rho=\mathbf{A} / \mathbf{r}$ positive.

1- Applying GAUSS' theorem, calculate the electric field at any point in space.
2- Deduce the electric potential at any point in space.
3- Plot the graphs $E(r)$ and $V(r)$ as a function of r.

