Correction of SW N ${ }^{\circ} 01$ Electricity
 Part 2: ELECTROSTATICS
 Charges distribution

Exercise 5 :

- The electric field components dEx and dEy resulting from the charge in the elementary element of length dy defined by the angle $\boldsymbol{\theta}$.

The elementary electric field $d \vec{E}$, at point M , created by the linear charge element dq present in the element of length dl.

The charge is on the axis ($O y$) so dl=dy and $d q=\lambda d y$
$d \vec{E}=k \frac{d q}{r^{2}} \vec{u}$
(with r is the distance between the elementary charge dq and the point M) and \vec{u} is directed from dq to the point M .
$\vec{u}=\cos \theta \vec{\imath}-\sin \theta \vec{\jmath}$

$$
d \vec{E}=k \frac{d q}{r^{2}} \vec{u}=k \frac{\lambda \mathrm{dy}}{r^{2}}(\cos \theta \vec{\imath}-\sin \theta \vec{\jmath}) \Rightarrow\left\{\begin{array}{l}
d E_{X}=k \frac{\lambda \mathrm{dy}}{r^{2}} \cos \theta \\
d E_{y}=-k \frac{\lambda \mathrm{dy}}{r^{2}} \sin \theta
\end{array}\right.
$$

We have three variables: y, r and θ; we need to choose one variable and write the other two as a function of this variable

In this case the variable chosen is θ which varies from α to $\pi / 2$.
Write r and y as functions of $\theta \pi / 2$.
$\cos \theta=\frac{a}{r} \Rightarrow r=\frac{a}{\cos \theta} \quad$ with $« \mathrm{a} »$ is the distance OM and it does not depend on θ.

$$
\begin{gathered}
\operatorname{tg} \theta=\frac{y}{a} \Rightarrow y=a \operatorname{tg} \theta \\
\Rightarrow d y=a d(\operatorname{tg} \theta)=\frac{a}{\cos ^{2} \theta} d \theta
\end{gathered}
$$

$$
\left\{\begin{array} { c }
{ d E _ { X } = k \frac { \lambda \frac { a } { \operatorname { c o s } ^ { 2 } \theta } d \theta } { \frac { a ^ { 2 } } { \operatorname { c o s } ^ { 2 } \theta } } \operatorname { c o s } \theta } \\
{ d E _ { y } = - k \frac { \lambda \frac { a } { \operatorname { c o s } ^ { 2 } \theta } d \theta } { \frac { a ^ { 2 } } { \operatorname { c o s } ^ { 2 } \theta } } \operatorname { s i n } \theta }
\end{array} \Rightarrow \left\{\begin{array}{l}
d E_{X}=k \frac{\lambda}{a} \cos \theta d \theta \\
d E_{y}=-k \frac{\lambda}{a} \sin \theta d \theta
\end{array}\right.\right.
$$

- The Ex and Ey components of the electric field created by the wire (Ay) and its modulus:

The studied load changes or is located from point A, corresponding to angle α, to infinity, corresponding to angle $\pi / 2$.

$$
\left.\begin{array}{rl}
\left\{E_{X}=\int_{\alpha}^{\pi / 2} d E_{X}=k \frac{\lambda}{a} \int_{\alpha}^{\pi / 2} \cos \theta d \theta\right. \\
E_{y}=\int_{\alpha}^{\pi / 2} d E_{y}=-k \frac{\lambda}{a} \int_{\alpha}^{\pi / 2} \sin \theta d \theta
\end{array} \Rightarrow\left\{\begin{array}{c}
E_{X}=k \frac{\lambda}{a}(\sin (\pi / 2)-\sin \alpha) \\
E_{y}=k \frac{\lambda}{a}(-\cos (\pi / 2)+\cos \alpha)
\end{array}\right] \begin{array}{c}
E_{X}=k \frac{\lambda}{a}(1-\sin \alpha) \\
E_{y}=k \frac{\lambda}{a} \cos \alpha
\end{array}\right]
$$

The modulus of the electric field: $|\vec{E}|=\sqrt{\left(k \frac{\lambda}{a}(1-\sin \alpha)\right)^{2}+\left(k \frac{\lambda}{a} \cos \alpha\right)^{2}}$

- The expression of the electric field at the point M equidistant from the ends of the wire of length 2L:

In this case, the angle θ varies from ($-\Phi$) to Φ.

$$
\begin{aligned}
& \left\{\begin{array}{c}
E_{X}=\int_{-\Phi}^{\Phi} d E_{X}=k \frac{\lambda}{a} \int_{-\Phi}^{\Phi} \cos \theta d \theta \\
E_{y}=\int_{-\Phi}^{\Phi} d E_{y}=-k \frac{\lambda}{a} \int_{-\Phi}^{\Phi} \sin \theta d \theta
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{c}
E_{X}=k \frac{\lambda}{a}(\sin \Phi-\sin (-\Phi)) \\
E_{y}=-k \frac{\lambda}{a}(-\cos \Phi-(-\cos (-\Phi)))
\end{array}\right.
\end{aligned}
$$

$$
\Rightarrow\left\{\begin{array}{c}
E_{X}=k \frac{\lambda}{a}(\sin \Phi+\sin \Phi) \\
E_{y}=k \frac{\lambda}{a}(\cos \alpha-\cos \alpha)=0
\end{array}\right.
$$

$$
\Rightarrow \vec{E}=2 k \frac{\lambda}{a} \sin \Phi \vec{\imath}
$$

When symmetrical about the ($O x$) axis, the electric field will have a single component along the x-axis, the other component being zero.
$\sin \Phi=\frac{L}{r}=\frac{L}{\sqrt{L^{2}+a^{2}}} \quad$ so $\vec{E}=2 k \frac{\lambda \mathrm{~L}}{a \sqrt{L^{2}+a^{2}}} \vec{l}, r=\sqrt{L^{2}+a^{2}}$

- The electric field for an infinite wire

In this case θ varies from $(-\pi / 2)$ to $\pi / 2$

$$
\begin{aligned}
& \left\{\begin{array}{l}
E_{X}=\int_{-\pi / 2}^{\pi / 2} d E_{X}=k \frac{\lambda}{a} \int_{-\pi / 2}^{\pi / 2} \cos \theta d \theta \\
E_{y}=\int_{-\pi / 2}^{\pi / 2} d E_{y}=-k \frac{\lambda}{a} \int_{-\pi / 2}^{\pi / 2} \sin \theta d \theta
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{c}
E_{X}=k \frac{\lambda}{a}(\sin \pi / 2-\sin (-\pi / 2)) \\
E_{y}=-k \frac{\lambda}{a}(-\cos \pi / 2+\cos (-\pi / 2))
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{c}
E_{X}=k \frac{\lambda}{a}(\sin \pi / 2+\sin \pi / 2) \\
E_{y}=k \frac{\lambda}{a}(\cos \pi / 2-\cos \pi / 2)=0
\end{array}\right. \\
& \Rightarrow \vec{E}=2 k \frac{\lambda}{a} \vec{l}
\end{aligned}
$$

Exercise 6:

1- Electrostatic field We're looking for the elementary field $(\overrightarrow{d E})$ created by the Charge element dq present in the element of length dl.

We are looking for the elementary field $\overrightarrow{d E}$ created by the charge element dq present in the element of length $\mathrm{dl} . \quad(\mathrm{dq}=\lambda \mathrm{dl})$

$$
\overrightarrow{d E}=\frac{k d q}{a^{2}} \vec{u} \Rightarrow \overrightarrow{d E}=\frac{k \lambda \mathrm{dl}}{R^{2}+x^{2}}(\cos \theta \vec{\imath}-\sin \theta \vec{\jmath})
$$

According to the relationship of Pitagorth : $\mathrm{a}^{2}=\mathrm{R}^{2}+\mathrm{x}^{2}$ and $\vec{u}=\cos \theta \vec{\imath}-\sin \theta \vec{\jmath}$

We have symmetry with respect to the axis (Ox), so the electric field has a single component $\mathrm{E}_{\mathrm{x}},\left(\mathrm{E}_{\mathrm{y}}=0\right)$ and $\cos \theta=\frac{x}{a}=\frac{x}{\sqrt{R^{2}+x^{2}}}$

So $d E_{x}=\frac{k \lambda}{R^{2}+x^{2}} \frac{x}{\sqrt{R^{2}+x^{2}}} d l \Rightarrow d E_{x}=k \lambda \frac{\mathrm{x}}{\left(R^{2}+x^{2}\right)^{\frac{3}{2}}} d l$, (There is a single variable (1) and x and R are constant with respect to l).
$E_{x}=k \lambda \frac{\mathrm{x}}{\left(R^{2}+x^{2}\right)^{\frac{3}{2}}} \int_{0}^{2 \pi \mathrm{R}} d l=k \lambda \frac{\mathrm{x}}{\left(R^{2}+x^{2}\right)^{\frac{3}{2}}} 2 \pi \mathrm{R}$ with $\mathrm{k}=1 /\left(4 \pi \varepsilon_{0}\right)$
So $E=\frac{\lambda}{2 \varepsilon_{0}} \frac{\mathrm{x} \mathrm{R}}{\left(R^{2}+x^{2}\right)^{\frac{3}{2}}}$

2- Electrostatic Potentiel :

$$
\begin{gathered}
\vec{E}=-\overrightarrow{g r a d} V=-\frac{d V}{d x} \vec{\imath} \Rightarrow E=-\frac{d V}{d x} \\
V=-\int E d x=-\frac{\lambda \mathrm{R}}{2 \varepsilon_{0}} \frac{1}{2} \int \frac{2 \mathrm{x}}{\left(R^{2}+x^{2}\right)^{\frac{3}{2}}} d x \\
\int U^{\prime} U^{n}=\frac{U^{n+1}}{n+1} \operatorname{pour} \int \frac{U^{\prime}}{U}=\ln U \\
\mathrm{U}=R^{2}+x^{2} ; \mathrm{n}=-3 / 2, \mathrm{U}=2 \mathrm{x} \text { so } \frac{\left(R^{2}+x^{2}\right)^{\frac{-3}{2}+1}}{\frac{-3}{2}+1}=\frac{\left(R^{2}+x^{2}\right)^{\frac{-1}{2}}}{\frac{-1}{2}}=\frac{-2}{\sqrt{R^{2}+x^{2}}} \\
V=-\int E d x=-\frac{\lambda \mathrm{R}}{2 \varepsilon_{0}} \frac{1}{2}\left(\frac{-2}{\sqrt{R^{2}+x^{2}}}\right)
\end{gathered}
$$

So $V=\frac{\lambda R}{2 \varepsilon_{0}} \frac{1}{\sqrt{R^{2}+x^{2}}}$

Exercise 7:

1- Electrostatic Potentiel :
We are looking for the elemental potential dV created by the Charge element dq present in the elemental surface. ds. (dq=ods)
$d v=k \frac{d q}{r}$
$d q=\sigma d s$

The elementary surface in this case is a ring of radius r (with $0<r<R$) and thickness dr and $\mathrm{ds}=2 \pi \mathrm{rdr}$.

$$
2 \pi r
$$

$\mathrm{ds}=2 \pi \mathrm{rdr}$
$\mathrm{S}=\pi r^{2} \Rightarrow d s=2 \pi r d r$

$$
\begin{gathered}
d v=k \frac{d q}{a}=k \frac{\sigma \mathrm{ds}}{\sqrt{\mathrm{r}^{2}+\mathrm{y}^{2}}}=k \frac{\sigma 2 \pi \mathrm{rdr}}{\sqrt{\mathrm{r}^{2}+\mathrm{y}^{2}}} \\
v=k \sigma \pi \int_{0}^{R} \frac{2 \mathrm{rdr}}{\sqrt{\mathrm{r}^{2}+\mathrm{y}^{2}}} \\
\int U^{\prime} U^{n}=\frac{U^{n+1}}{n+1}
\end{gathered}
$$

$\mathrm{U}=r^{2}+y^{2}, \quad \mathrm{n}=-1 / 2 ; \quad \mathrm{U}=2 \mathrm{rdr}$

$$
\begin{gathered}
v=k \sigma \pi \int_{0}^{R} 2 \operatorname{rdr}\left(\mathrm{r}^{2}+\mathrm{y}^{2}\right)^{\frac{-1}{2}} \\
v=k \sigma \pi \frac{\left(\mathrm{r}^{2}+\mathrm{y}^{2}\right)^{\frac{1}{2}}}{\frac{1}{2}} \\
v=2 k \sigma \pi \sqrt{\mathrm{r}^{2}+\mathrm{y}^{2}} \\
v=2 k \sigma \pi\left(\sqrt{\mathrm{R}^{2}+\mathrm{y}^{2}}-\sqrt{\mathrm{y}^{2}}\right) \\
v \sigma \pi \int_{0}^{\mathrm{R}} \frac{2 \mathrm{rdr}}{\sqrt{\mathrm{r}^{2}+\mathrm{y}^{2}}}=2 k \sigma \pi \sqrt{\mathrm{R}^{2}+\mathrm{y}^{2}}-2 k \sigma \pi \sqrt{0+\mathrm{y}^{2}} \\
v=2 k \sigma \pi\left(\sqrt{\mathrm{R}^{2}+\mathrm{y}^{2}}-|\mathrm{y}|\right) \\
v=:\left\{\begin{array}{l}
y>0 \quad v=2 k \sigma \pi\left(\sqrt{\mathrm{R}^{2}+\mathrm{y}^{2}}-\mathrm{y}\right) \\
y<0 \quad v=2 k \sigma \pi\left(\sqrt{\mathrm{R}^{2}+\mathrm{y}^{2}}+\mathrm{y}\right)
\end{array}\right.
\end{gathered}
$$

- Calculate of electrostatic Feild :

$$
\begin{aligned}
\vec{E}=-\overrightarrow{g r a d} V= & -\frac{d V}{d y} \vec{J} \Rightarrow E=-\frac{d V}{d y} \\
& \vec{E}= \begin{cases}y>0 & E_{y}=-2 k \sigma \pi\left(\frac{\mathrm{y}}{\sqrt{\mathrm{R}^{2}+\mathrm{y}^{2}}}-1\right) \\
y<0 & E_{y}=-2 k \sigma \pi\left(\frac{\mathrm{y}}{\sqrt{\mathrm{R}^{2}+\mathrm{y}^{2}}}+1\right)\end{cases}
\end{aligned}
$$

- Calculating the electric field using the direct method:
with $\mathrm{dq}=\sigma \mathrm{ds}=\mathrm{dq}=\sigma 2 \pi \mathrm{rdr}$, according to the relationship of Pitagorth:

$$
\mathrm{a}^{2}=\mathrm{r}^{2}+\mathrm{y}^{2} \text { and } \vec{u}=\sin \theta \vec{\imath}+\cos \theta \vec{\jmath}
$$

We have symmetry with respect to the axis (Oy), so the electric field has a single component $\mathrm{E}_{\mathrm{y}},\left(\mathrm{E}_{\mathrm{x}}=0\right)$ and $\cos \theta=\frac{y}{a}=\frac{y}{\sqrt{r^{2}+y^{2}}}$.
$\overrightarrow{d E}=\frac{k d q}{a^{2}} \vec{u} \Rightarrow \overrightarrow{d E}=\frac{k \sigma \mathrm{ds}}{R^{2}+x^{2}}(\sin \theta \vec{\imath}+\cos \theta \vec{\jmath})$
so $d E_{y}=\frac{k \sigma 2 \pi \mathrm{rdr}}{r^{2}+y^{2}} \frac{y}{\sqrt{r^{2}+y^{2}}} \Rightarrow d E_{y}=k \sigma \pi y \frac{2 \mathrm{rdr}}{\left(r^{2}+y^{2}\right)^{\frac{3}{2}}}$
$E_{y}=k \sigma \pi y \int_{0}^{\mathrm{R}} \frac{2 \mathrm{rdr}}{\left(r^{2}+y^{2}\right)^{\frac{3}{2}}}=-2 k \sigma \pi y\left(\frac{1}{\sqrt{R^{2}+y^{2}}}-\frac{1}{|\mathrm{y}|}\right)$,

with $\mathrm{k}=1 /\left(4 \pi \varepsilon_{0}\right)$
so we have tow cases

$$
E=E_{y}: \begin{cases}y>0 & E_{y}=-\frac{\sigma}{2 \varepsilon_{0}}\left(\frac{\mathrm{y}}{\sqrt{R^{2}+y^{2}}}-1\right) \\ y<0 & E_{y}=-\frac{\sigma}{2 \varepsilon_{0}}\left(\frac{\mathrm{y}}{\sqrt{R^{2}+y^{2}}}+1\right)\end{cases}
$$

2- The electric field as the disk radius R tends towards infinity :
$\lim _{R \rightarrow \infty} E:\left\{\begin{array}{cc}y>0 & E_{y}=\frac{\sigma}{2 \varepsilon_{0}} \\ y<0 & E_{y}=-\frac{\sigma}{2 \varepsilon_{0}}\end{array}\right.$ so $\lim _{R \rightarrow \infty}|E|=\frac{\sigma}{2 \varepsilon_{0}}$

