SW N ${ }^{\circ} 03$ of Electricity

Conductors and Capacitors

Exercise 1

Rubbing an ebonite stick produces a charge of 10 nC . This charge is transferred by contact to a metal sphere of radius $\mathrm{R}=10 \mathrm{~cm}$.

What is the field strength in the vicinity of the sphere?

Exercise 2

Consider a spherical conductor (C) of center O and radius R connected to ground (its potential is zero). This conductor is brought into contact with a conductive sphere (S) with center A such that $\mathrm{OA}=\mathrm{d}$ and charge $(+\mathrm{Q})$. Neglecting the influence of the conductor (C) on the sphere (S), calculate the charge q of (C).

Exercise 3:

Consider two conductive spheres, with radius $\mathrm{R}_{1}=2 \mathrm{~cm}$ and $\mathrm{R}_{2}=3 \mathrm{~cm}$, which are far apart. They carry electric charges $\mathrm{Q}_{1}=10 \mu \mathrm{C}$ and $\mathrm{Q}_{2}=15 \mu \mathrm{C}$, respectively. The two spheres are connected by a thin conducting wire. If we neglect the charge carried by the wire:

1. Calculate the new charges $\mathrm{Q}_{1}{ }^{\prime}$ and $\mathrm{Q}_{2}{ }^{\prime}$ of the two spheres.
2. Calculate the amount of charge passing through the wire. Comment on the result.

Exercise 4

Consider the following group of capacitors.
1- Determine the equivalent capacitance of the assembly.
2- Calculate the voltage between the armatures of each capacitors.
3- Calculate the electrical charge carried by each capacitor.
We give: $\mathrm{C}_{1}=3 \mu \mathrm{~F} ; \mathrm{C}_{2}=6 \mu \mathrm{~F} ; \mathrm{C}_{3}=2 \mu \mathrm{~F} ; \mathrm{C}_{4}=4 \mu \mathrm{~F}$ et $\mathrm{U}=90 \mathrm{~V}$.

Exercise 5

1) What is the equivalent capacitance of the following segmen $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}=3.010^{-3} \mathrm{~F}$
2) If a voltage $V_{a b}=6.0 \mathrm{~V}$ is applied, what is the charge of each capacitor?
3) What is the voltage across each capacitor?
4) Consider two plates separated by $d=1.5 \mathrm{~cm}$,

where the electric field between them is $100 \mathrm{~V} / \mathrm{m}$, and the charge on the plates is $30.010^{-3} \mathrm{C}$. What is the capacitance of the capacitor formed?
5) A capacitor has a charge of $3.010^{-9} \mathrm{C}$ when the voltage across the capacitor is 12 V . How much energy is stored in the capacitor?

Supplementary exercises

Exercise 1

A. Consider the capacitor bank shown in figure 2.

1- Determine the equivalent capacitance between points A and B.
2- Find the charge carried by each capacitor when the voltage between A and B is 12 V . 3- Calculate the potential difference across each capacitor. We give : $\mathrm{C}_{1}=2 \mu \mathrm{~F} ; \mathrm{C}_{2}=10 \mu \mathrm{~F} ; \mathrm{C}_{3}=4 \mu \mathrm{~F} ; \mathrm{etC}_{4}=7 \mu \mathrm{~F} \quad \mathrm{~A}$
B. Consider two plates separated by $\mathrm{d}=1.5 \mathrm{~cm}$, where the electric field between them is $100 \mathrm{~V} / \mathrm{m}$, and the charge on the plates is $3010^{-3} \mathrm{Cb}$.
What is the capacitance of the capacitor formed?
C. A capacitor has a charge of $3.010^{-9} \mathrm{C}$ when
 the voltage across the capacitor is 12 V . How much energy is stored in the capacitor?

Exercise 2

Consider the circuit below.
1- Knowing that capacitor C_{1} carries charge $Q_{1}=10 \mu \mathrm{C}$, what will be the voltage V_{AD} between points A and D ?

2- Determine the charges Q_{2} and Q_{3} of capacitors C_{2} and C_{3} respectively.
3- Since the voltage between B and D is equal to $2 V$, calculate the charges Q_{4} and Q_{5} of capacitors C_{4} and C_{5}.

4- What is the equivalent capacitance C_{eq} of the entire circuit?
5- Calculate the energy stored by capacitor C_{1}.
We give : $\mathrm{C}_{1}=4 \mu \mathrm{~F}, \mathrm{C}_{2}=3.5 \mu \mathrm{~F}, \mathrm{C}_{3}=2.5 \mu \mathrm{~F}, \mathrm{C}_{4}=\mathrm{C}_{5}=\mathrm{C}_{7}=\mathrm{C}_{8}=5 \mu \mathrm{~F}, \mathrm{C}_{6}=10 \mu \mathrm{~F}$.

