

A.Y: 2023/2024 1st year LMD-M and MI

SW N° 03 of Electricity Conductors and Capacitors

Exercise 1

Rubbing an ebonite stick produces a charge of 10 nC. This charge is transferred by contact to a metal sphere of radius R=10 cm.

What is the field strength in the vicinity of the sphere?

Exercise 2

Consider a spherical conductor (C) of center O and radius R connected to ground (its potential is zero). This conductor is brought into contact with a conductive sphere (S) with center A such that OA = d and charge (+Q). Neglecting the influence of the conductor (C) on the sphere (S), calculate the charge q of (C).

Exercise 3:

Consider two conductive spheres, with radius R_1 =2cm and R_2 =3cm, which are far apart. They carry electric charges Q_1 =10 μ C and Q_2 =15 μ C, respectively. The two spheres are connected by a thin conducting wire. If we neglect the charge carried by the wire:

- 1. Calculate the new charges Q_1' and Q_2' of the two spheres.
- 2. Calculate the amount of charge passing through the wire. Comment on the result.

Exercise 4

Consider the following group of capacitors.

- 1- Determine the equivalent capacitance of the assembly.
- 2- Calculate the voltage between the armatures of each capacitors.
- 3- Calculate the electrical charge carried by each capacitor. We give: C_1 =3 μ F; C_2 = 6 μ F; C_3 =2 μ F; C_4 =4 μ F et U=90V.

Exercise 5

1) What is the equivalent capacitance of the following segmen

 $C_1 = C_2 = C_3 = 3.0 \cdot 10^{-3} \text{ F}$

- 2) If a voltage $V_{ab} = 6.0 \text{ V}$ is applied, what is the charge of each capacitor?
- 3) What is the voltage across each capacitor?
- 4) Consider two plates separated by d = 1.5 cm,

where the electric field between them is 100 V / m, and the charge on the plates is $30.0 \cdot 10^{-3} \text{C}$. What is the capacitance of the capacitor formed?

5) A capacitor has a charge of 3.0 10^{-9} C when the voltage across the capacitor is 12 V. How much energy is stored in the capacitor?

Supplementary exercises

Exercise 1

- A. Consider the capacitor bank shown in figure 2.
- 1- Determine the equivalent capacitance between points A and B.
- 2- Find the charge carried by each capacitor when the voltage between A and B is 12 V.
- 3- Calculate the potential difference across each capacitor.

We give : $C_1 = 2 \mu F$; $C_2 = 10 \mu F$; $C_3 = 4 \mu F$; et $C_4 = 7 \mu F$

B. Consider two plates separated by d = 1.5 cm, where the electric field between them is 100 V/m, and the charge on the plates is $30 \cdot 10^{-3} \text{Cb}$. What is the capacitance of the capacitor formed?

C. A capacitor has a charge of 3.0 10⁻⁹C when

the voltage across the capacitor is 12 V. How much energy is stored in the capacitor?

Exercise 2

Consider the circuit below.

- 1- Knowing that capacitor C_1 carries charge Q_1 =10 μ C, what will be the voltage V_{AD} between points A and D?
 - 2- Determine the charges Q₂ and Q₃ of capacitors C₂ and C₃ respectively.
- 3- Since the voltage between B and D is equal to 2V, calculate the charges Q_4 and Q_5 of capacitors C_4 and C_5 .
 - 4- What is the equivalent capacitance C_{eq} of the entire circuit?
 - 5- Calculate the energy stored by capacitor C_1 .

We give: $C_1=4\mu F$, $C_2=3.5\mu F$, $C_3=2.5\mu F$, $C_4=C_5=C_7=C_8=5\mu F$, $C_6=10\mu F$.

