

Bases de données

Université Aboubakr Belkaïd de Tlemcen

© L3 Génie Industriel

Chapitre 3 (suite) L'algèbre relationnelle

Plan

- L'opérateur de renommage
- Les opérateurs ensemblistes (union, intersection, différence)
- Le produit cartésien
- Les jointures

L'opérateur de renommage ρ

L'opérateur de renommage

$$\rho_{R'(A_1',\dots,A_n')}R$$

Renomme le schéma d'une relation

R(AI, ..., An) en R'(AI', ..., An')

(dans le retour de la requête)

 $\rho_{PERSONNE(idPersonne, nomPersonne)} (\pi_{idEtudiant, nomEtudiant} ETUDIANT)$

ETUDIANT

idEtudiant	nomEtudiant	âge
	Yasmine	20
2	Rachad	17

PERSONNE

idPersonne	nomPersonne
I	Yasmine
2	Rachad

L'opérateur de renommage

$$ho_{R'}(R)$$
 Renomme une relation R en R'

$\rho_{PERSONNE}$ (ETUDIANT)

ETUDIANT

idEtudiant	nomEtudiant	âge
	Yasmine	20
2	Rachad	17

PERSONNE

idEtudiant	nomEtudiant	âge
_	Yasmine	20
2	Rachad	17

L'opérateur de renommage

$$\rho_{(A_1',\dots,A_n')}(R)$$

Renomme les attributs d'une relation R(A1,...,An) en A1',...,An'

 $\rho_{idPersonne, nomPersonne, age}$ (ETUDIANT)

ETUDIANT

idEtudiant	nomEtudiant	âge
	Yasmine	20
2	Rachad	17

ETUDIANT

idPersonne	nomPersonne	âge
I	Yasmine	20
2	Rachad	17

Les opérateurs ensemblistes

L'union

L'union

L'union de deux relations avec des attributs identiques produit une relation qui contient l'ensemble des éléments qui se trouvent dans les deux relations.

Les noms des étudiants et les noms des employés

$$(\pi_{nom} \text{ ETUDIANT}) \cup (\pi_{nom} \text{ EMPLOYE})$$

ETUDIANT

EMPLOYE

idEtudiant	nom	age	idEmploye	nom	salaire
I	Yasmine	20	100	Rayan	20000
2	Rachad	17	230	Nihel	12000

nom

- Yasmine
- Rachad
- Rayar
- Nihe

L'union

Les noms des étudiants et les noms des matières:

(Comme les attributs doivent être identiques, on doit renommer les attributs)

$$(\rho_{nom}(\pi_{nomEtudiant} \text{ ETUDIANT})) \cup (\rho_{nom}(\pi_{nomMatiere} \text{ MATIERE}))$$

ETUDIANT

MATIERE

idEtudiant	nomEtudiant	age	idMatiere	nomMatiere	nbr
I	Yasmine	20	I	Maths	20
2	Rachad	17	2	Psychologie	12

nom

- Yasmine
- Rachad
- Maths
- Psychologie

L'intersection

L'intersection

L'intersection de deux relations avec des attributs identiques produit une relation qui contient les éléments qui se trouvent dans la première relation et dans la seconde relation.

Les identifiants des personnes qui ont une note:

$$(\pi_{idEtudiant} \text{ ETUDIANT}) \cap (\pi_{idEtudiant} \text{ NOTE}) = (\frac{1}{2}) \cap (1)$$

ETUDIANT

NOTE

idEtudiant	nomEtudiant	âge	idEtudiant	idMatiere	note
ı	Yasmine	20			13
2	Rachad	17		2	19

La différence -

La différence

La différence de deux relations avec des attributs identiques produit une relation qui contient l'ensemble des éléments qui se trouvent dans la première relation mais ne se trouvent pas dans la deuxième.

Les identifiants des étudiants qui n'ont pas de notes

$$(\pi_{idEtudiant} \text{ ETUDIANT}) - (\pi_{idEtudiant} \text{ NOTE}) = (\frac{1}{2}) - (1)$$

ETUDIANT

NOTE

idEtudiant	nomEtudiant	âge	idEtudiant	idMatiere	note
I	Yasmine	20			13
2	Rachad	17	I	2	19

TD

Calculer l'union, l'intersection et la différence de A et B:

A		
AI	A2	A3
Ι	2	4
2	3	5
8	8	6
9	9	0
4	5	I

ΑI	A2	A3
-	2	4
4	2	2
4	9	5
9	9	0
2	3	5

Correction

Α			
ΑI	A2	A3	
Ι	2	4	
2	3	5	
8	8	6	
9	9	0	
4	5		

В			
ΑI	A2	A3	
Ι	2	4	
4	2	2	
4	9	5	
9	9	0	
2	3	5	

$A \cap B$			
AI	A2	A3	
	2	4	
2	3	5	
9	9	0	

	_		
AI	A2	A3	
8	8	6	
4	5	Ι	

A - B

$A \cup B$				
ΑI	A2	A3		
	2	4		
2	3	5		
8	8	6		
9	9	0		
4	5	I		
4	2	2		
4	9	5		

TD

Ecrire ces requêtes:

- 1. Les identifiants des personnes qui ont des amis
- 2. Les identifiants des personnes qui n'ont pas d'amis
- 3. Les identifiants des personnes qui ont un ami et un âge >= 20

PERSONNE

idPersonne	nomPersonne	âge
I	Yasmine	20
2	Amel	18
3	Reda	40
4	Nassim	56

AMI

idPI	idP2
I	2
2	3

Correction

- 1. R = $(\rho_{identifiant}(\pi_{idP1} \text{ AMI})) \cup (\rho_{identifiant}(\pi_{idP2} \text{ AMI}))$
- 2. $\rho_{identifiant}(\pi_{idPersonne} \text{ PERSONNE})$ $(\rho_{identifiant}(\pi_{idP1} \text{ AMI})) \cup (\rho_{identifiant}(\pi_{idP2} \text{ AMI}))$
- 3. $\rho_{identifiant}(\pi_{idPersonne}(\sigma_{age \geq 20} \text{ PERSONNE})) \cap R$

Le produit cartésien X

Le produit cartésien

Le produit cartésien de deux relations retourne toutes les combinaisons de lignes possibles à partir de ces deux relations.

ETUDIANT X NOTE

idEtudiant	nomEtudiant	âge	idEtudiant	idMatiere	note
1	Yasmine	20			13
2	Rachad	17			13
- 1	Yasmine	20	1	2	19
2	Rachad	17	I	2	19

ETUDIANT

idEtudiant	nomEtudiant	age
	Yasmine	20
2	Rachad	17

NOTE

idEtudiant	idMatiere	note
		13
_	2	19

SELECT & le produit cartésien

Sélection de lignes à partir du produit cartésien

Tous les étudiants qui ont une note:

 $\sigma_{ETUDIANT.idEtudiant=NOTE.idEtudiant}$ ETUDIANT X NOTE

idEtudiant	nomEtudiant	âge	idEtudiant	idMatiere	note
- 1	Yasmine	20		1	13
2	Rachad	17		I	13
- I	Yasmine	20	I	2	19
2	Rachad	17	I	2	19

SELECT & X

Sélection de lignes à partir du produit cartésien

Tous les étudiants qui ont une note en Maths:

 $\sigma_{ETUDIANT.idEtudiant=NOTE.idEtudiant \ \land \ idMatiere=1} \ ETUDIANT \ X \ NOTE$

idMatiere	nomMatiere	nbr
I	Maths	20
2	Psychologie	12

idEtudiant	nomEtudiant	âge	idEtudiant	idMatiere	note
- 1	Yasmine	20		1	13
2	Rachad	17		I	13
I	Yasmine	20	I	2	19
2	Rachad	17	Ī	2	19

PROJECT, SELECT & X

Projection de colonnes de lignes sélectionnées à partir du produit cartésien

Les noms et les notes des étudiants qui ont une note en Maths:

```
\pi_{nomEtudiant, \ note} ( \sigma_{ETUDIANT.idEtudiant=NOTE.idEtudiant \ \land \ idMatiere=1} \ ETUDIANT \ X \ NOTE
```

idEtudiant	nomEtudiant	âge	idEtudiant	idMatiere	note
I	Yasmine	20			13
2	Rachad	17		I	13
I	Yasmine	20		2	19
2	2 Rachad		Ī	2	19

Trouver les expressions équivalentes

```
1. \pi_{nomEtudiant, note} (
     \sigma_{ETUDIANT.idEtudiant=NOTE.idEtudiant \land idMatiere=1} ETUDIANT X NOTE)
2. \pi_{nomEtudiant, note} (
     \sigma_{ETUDIANT.idEtudiant=NOTE.idEtudiant} (ETUDIANT X (\sigma_{idMatiere=1} NOTE)))
3. \pi_{nomEtudiant, note} (
     \sigma_{ETUDIANT.idEtudiant=NOTE.idEtudiant \land idMatiere=1}
                     ETUDIANT X (\pi_{idEtudiant,idMatiere}NOTE))
4. \sigma_{ETUDIANT.idEtudiant=NOTE.idEtudiant} (
```

 $\pi_{nomEtudiant, note}$ ($\sigma_{idMatiere=1}$ ETUDIANT X NOTE)

TD

Calculer le produit cartésien de A et B puis: $\pi_{B1,A1}$ A X B

A		
AI	A2	A3
ı	2	4
2	3	5
8	8	6

В						
ВΙ	B2	В3				
I	2	4				
4	2	2				

Correction

A

ΑI	A2	A3
I	2	4
2	3	5
8	8	6

B

ВІ	B2	В3
-	2	4
4	2	2

 $\pi_{B1,A1}$ A X B

ВІ	ΑI
I	_
I	2
I	8
4	I
4	2
4	8

AXB

AI	A2	A3	ВІ	B2	В3
I	2	4	_	2	4
2	3	5	_	2	4
8	8	6	_	2	4
I	2	4	4	2	2
2	3	5	4	2	2
8	8	6	4	2	2

Les jointures

 \bowtie

Le jointure naturelle de deux relations retourne les lignes du produit cartésien de ces deux relations dont la valeur des attributs en commun est égale. Ces attributs ne sont pas dupliqués lors du retour de la requête.

ETUDIANT MOTE est équivalente à:

 $\pi_{idEtudiant, nomEtudiant, age, idMatiere, note}$ ($\sigma_{ETUDIANT.idEtudiant=NOTE.idEtudiant}$ ETUDIANT X NOTE)

idEtudiant	nomEtudiant	âge	idEtudiant	idMatiere	note
I	Yasmine	20	[- 1	13
2	Rachad	17			13
I	Yasmine	20		2	19
2	Rachad	17	I	2	19

ETUDIANT M NOTE

Tous les étudiants qui ont une note en Maths:

$$\sigma_{idMatiere=1}$$
(ETUDIANT \bowtie NOTE)

idEtudiant	nomEtudiant	âge	idMatiere	note
ı	Yasmine	20	_	13
I	Yasmine	20	2	19

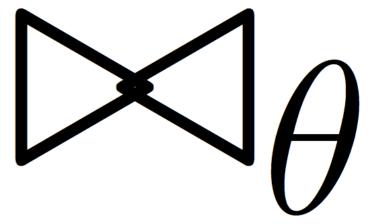
ETUDIANT M NOTE MATIERE

idE	tudiant	nomEtudiant	âge	idMatiere	note	nomMatiere	nbr
	I	Yasmine	20	I	13	Maths	20
	I	Yasmine	20	2	19	Psychologie	12

ETUDIANT

MATIERE

NOTE


idEtud	iant	nomEtudiant	âge	idMatiere	nomMatiere	nbr	idEtudiant	idMatiere	note
I		Yasmine	20	I	Maths	20			13
2		Rachad	17	2	Psychologie	12		2	19

Tous les étudiants qui ont une note en Maths:

$$\sigma_{nomMatiere='Maths'}$$
 (ETUDIANT \bowtie NOTE \bowtie MATIERE)

idEtudiant	nomEtudiant	âge	idMatiere	note	nomMatiere	nbr
1	Yasmine	20		13	Maths	20
I	Yasmine	20	2	19	Psychologie	12

La jointure theta

La jointure theta

 \bowtie_{θ}

La jointure theta de deux relations retourne les lignes du poduit cartésien de ces deux relations qui vérifient la condition theta.

RI
$$\bowtie_{\theta}$$
 R2 est équivalente à σ_{θ} $R1$ X $R2$

 $\sigma_{ETUDIANT.idEtudiant=NOTE.idEtudiant \land idMatiere=1}$ ETUDIANT X NOTE)

ETUDIANT $\bowtie_{ETUDIANT.idEtudiant=NOTE.idEtudiant \land idMatiere=1}$ NOTE)

Le terme «jointure» utilisé réfère souvent à la jointure theta

L'auto-jointure

Auto jointure

Une auto jointure est la jointure d'une relation avec elle même:

Les paires d'étudiants qui ont le même âge

1. $\sigma_{E.age=E'.age}$ (ρ_E ETUDIANT X $\rho_{E'}$ ETUDIANT)

Ε

idEtudiant	nomEtudiant	âge
	Yasmine	20
2	Rachad	17

E'

idEtudiant	nomEtudiant	âge
I	Yasmine	20
2	Rachad	17

EXE'

idEtudiant	nomEtudiant	âge	idEtudiant	nomEtudiant	âge
- 1	Yasmine	20	_	Yasmine	20
2	Rachad	17	2	Rachad	17
I	Yasmine	20	2	Rachad	17
2	Rachad	17	I	Yasmine	20

Auto jointure

Les paires d'étudiants qui ont le même âge

2.
$$(\rho_{E(id_1,nom_1,age)} \text{ETUDIANT}) \bowtie (\rho_{E'(id_2,nom_2,age)} \text{ETUDIANT})$$

Ε

idl	nom l	âge
I	Yasmine	20
2	Rachad	17

F'

id2	nom2	âge
	Yasmine	20
2	Rachad	17

 $E \bowtie E'$

idl	nom l	id2	nom2	âge
I	Yasmine	I	Yasmine	20
2	Rachad	2	Rachad	17

Auto jointure

Les paires (x,y) telles que l'étudiant x est différent de l'étudiant y

$$\sigma_{id1 < id2} \ [(\rho_{E(id_1,nom_1,age)} \text{ETUDIANT}) \bowtie (\rho_{E'(id_2,nom_2,age)} \text{ETUDIANT})]$$

E

idl	nom l	âge
I	Yasmine	20
2	Rachad	20

E'

id2	nom2	âge
	Yasmine	20
2	Rachad	20

 $E \bowtie E$

idl	nom l	id2	nom2	âge
I	Yasmine		Yasmine	20
2	Rachad	2	Rachad	20
I	Yasmine	2	Rachad	20
2	Rachad	I	Yasmine	20

TD

Calculer:

- la jointure naturelle de A et B

-E =
$$\sigma_{A.A1=B.A1} \wedge A.A2=B.A2 \wedge A.A3=B.A3$$
 A X B

A		
ΑI	A2	A3
I	2	4
2	3	5
8	8	6
9	9	0
4	5	I

ΑI	A2	A3		
I	2	4		
4	2	2		
4	9	5		
9	9	0		
2	3	5		

Correction

Α

ΑI	A2	A3	
I	2	4	
2	3	5	
8	8	6	
9	9	0	
4	5	I	

В

AI	A2	A3	
I	2	4	
4	2	2	
4	9	5	
9	9	0	
2	3	5	

 $A \bowtie B$

ΑI	A2	A3	
I	2	4	
2	3	5	
9	9	0	

E

ΑI	A2	A3	ΑI	A2	A3
_	2	4	—	2	4
2	3	5	2	3	5
9	9	0	9	9	0

TD

Soit le schéma relationnel suivant:

Personne(idPersonne, nomPersonne, age)

Restaurant(idResto, nomResto, ville)

Reservation(idPersonne, idResto, date)

Ecrire les requêtes suivantes:

- 1. Les noms des personnes qui ont fait des réservations en février 2020 à Tlemcen
- 2. Les villes des restaurants où Yasmine est partie
- 3. Les identifiants des personnes qui ont plus de 21 ans ou sont allés au restaurant «Le boudoir»
- 4. Les identifiants des personnes qui ont plus de 21 ans et qui n'ont pas fait de réservation au «Fumoir»
- 5. Les noms des personnes qui ont fait au moins deux réservations
- 6. Les noms des personnes plus âgées que Samah.