## Série de TD N ${ }^{\circ} 4$ <br> ELECTROCINETIQUE

## Exercise 1

Consider the circuit shown in the figure below:
1- Calculate the equivalent resistance of the circuit.
2- Given the generator voltage $\mathrm{E}=56 \mathrm{~V}$, calculate the current I delivered by the generator, specifying the direction of flow.
3- Calculate the voltage $\mathrm{V}_{\mathrm{AC}}$ between points A and C , and deduce the current in branch CD .
4- Calculate the voltage $\mathrm{V}_{\mathrm{EF}}$ between points E and F , and deduce the current in the EF branch.
5- Calculate the current in branch GH , and deduce the voltage $\mathrm{V}_{\mathrm{GH}}$ between points G and H .
6 - Calculate the power $P$ supplied by source $E$.


## Exercise 2

Consider the circuit shown in Figure 3:
1- Calculate the currents flowing through the three resistors and the current generated by the generator.
2-Put the three resistors and the generator together, as shown in figure 4.

- Calculate $\mathrm{I}_{1}, \mathrm{I}_{2}$ and $\mathrm{I}_{3}$.
- Find the current $\mathrm{I}_{1}$ using the equivalent circuit resistance.



## Exercise 3



Consider the circuit shown in the following diagram:


1- Calculate the value of the current I delivered by the generator, using Kirchhoff's two laws.
2- Find the value of the current I , using the equivalent resistance of the circuit.
3- Determine the potential difference (p.d.d) across $\mathrm{R}_{2}$ and deduce the power generated by this resistor $\left(\mathrm{R}_{2}\right)$.
4- Find the currents flowing through resistors $R_{4}$ and $R_{5}$.
We give: $\mathrm{E}=12 \mathrm{~V}, \mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=20 \Omega, \mathrm{R}_{3}=16 \Omega, \mathrm{R}_{4}=6 \Omega, \mathrm{R}_{5}=12 \Omega$

## Exrcise 4

Consider the following circuit:


We give : $\mathrm{R}_{l}=1 \mathrm{k} \Omega, \mathrm{R}_{2}=2 \mathrm{k} \Omega, \mathrm{R}_{3}=4 \mathrm{k} \Omega, \mathrm{R}_{4}=\mathrm{R}_{5}=3 \mathrm{k} \Omega$;
The voltage across the resistance $\mathrm{R}_{2}$ is, $\mathrm{U}_{R 2}=8 \mathrm{v}$, and the current $\mathrm{I}_{3}=2 \mathrm{~mA}$.

## Calculate E et R.

## Exercise 5

The following circuit has six resistors ( $\left.\mathrm{R}_{1}=10 \Omega, \mathrm{R}_{2}=20 \Omega, \mathrm{R}_{3}=20 \Omega, \mathrm{R}_{4}=5 \Omega, \mathrm{R}_{5}=6 \Omega, \mathrm{R}_{6}=3 \Omega\right)$ and two generators ( $\mathrm{E}_{1}=20 \mathrm{v}, \mathrm{E}_{2}=10 \mathrm{v}$ ).
1-Simplify the electrical circuit by calculating the equivalent resistances.
2- Calculate the currents $I_{1}, I_{2}$ and $I_{3}$ using Kirchoff's laws.


## Additional exercise

Consider the circuit shown in the following figure:
We give $\mathrm{E}_{1}=12 \mathrm{~V}, \mathrm{E}_{2}=8 \mathrm{~V}, \mathrm{r}_{1}=\mathrm{r}_{2}=1 \Omega, \mathrm{R}_{1}=4 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=5 \Omega$ and $\mathrm{C}=2 \mu \mathrm{~F}$.
1- Assuming the capacitor is fully charged, calculate the currents $I_{1}, I_{2}$ and $I_{3}$ using Kirchoff's laws.
2- Calculate the potential difference between points A and B.
3- Calculate the capacitor charge Q . What energy is stored in the capacitor?
4 - What is the power released by resistance $R_{3}$ ?


