Série de TD N° 4 ELECTROCINETIQUE #### Exercise 1 Consider the circuit shown in the figure below: - 1- Calculate the equivalent resistance of the circuit. - 2- Given the generator voltage E=56V, calculate the current I delivered by the generator, specifying the direction of flow. - 3- Calculate the voltage V_{AC} between points A and C, and deduce the current in branch CD. - 4- Calculate the voltage V_{EF} between points E and F, and deduce the current in the EF branch. - 5- Calculate the current in branch GH, and deduce the voltage V_{GH} between points G and H. - 6- Calculate the power P supplied by source E. #### Exercise 2 Consider the circuit shown in Figure 3: - 1- Calculate the currents flowing through the three resistors and the current generated by the generator. - 2- Put the three resistors and the generator together, as shown in figure 4. - Calculate I₁, I₂ and I₃. - Find the current I₁ using the equivalent circuit resistance. #### Exercise 3 Consider the circuit shown in the following diagram: - 1- Calculate the value of the current I delivered by the generator, using Kirchhoff's two laws. - 2- Find the value of the current I, using the equivalent resistance of the circuit. - 3- Determine the potential difference (p.d.d) across R_2 and deduce the power generated by this resistor (R_2) . - 4- Find the currents flowing through resistors R₄ and R₅. We give: E=12V, R_1 =2 Ω , R_2 =20 Ω , R_3 =16 Ω , R_4 =6 Ω , R_5 =12 Ω ## Exrcise 4 Consider the following circuit: We give : $R_1 = 1k\Omega$, $R_2 = 2k\Omega$, $R_3 = 4k\Omega$, $R_4 = R_5 = 3k\Omega$; The voltage across the resistance R_2 is, U_{R2} = 8v ,and the current I_3 = 2mA . Calculate E et R. ### Exercise 5 The following circuit has six resistors (R_1 =10 Ω , R_2 =20 Ω , R_3 =20 Ω , R_4 =5 Ω , R_5 =6 Ω , R_6 =3 Ω) and two generators (E_1 =20 ν , E_2 =10 ν). - 1- Simplify the electrical circuit by calculating the equivalent resistances. - 2- Calculate the currents I₁, I₂ and I₃ using Kirchoff's laws. ## **Additional exercise** Consider the circuit shown in the following figure: We give E_1 =12V, E_2 =8V, r_1 = r_2 =1 Ω , R_1 =4 Ω , R_2 =3 Ω , R_3 =5 Ω and C=2 μ F. - 1- Assuming the capacitor is fully charged, calculate the currents I_1 , I_2 and I_3 using Kirchoff's laws. - 2- Calculate the potential difference between points A and B. - 3- Calculate the capacitor charge Q. What energy is stored in the capacitor? - 4- What is the power released by resistance R_3 ?