Correction of SW No 3

Conductors and capacitors

Exercise 1

We have $\mathrm{E}=\frac{\sigma}{\varepsilon_{0}}$ with $\mathrm{Q}=\sigma . S=\sigma .4 \pi R^{2}$
so $E=\frac{\sigma}{\varepsilon_{0}}=\frac{Q}{4 \pi \varepsilon_{0} R^{2}}$
NA. $E=\frac{10^{-8}}{4 \pi 10^{-2} \cdot\left(8.85 \cdot 10^{-12}\right)}=9.10^{3} \mathrm{~V} / \mathrm{M}$

Exercise 2

Before influence,
Neglecting the influence of (C) on (S), let's find the charge q of (C).

Remember that when the conductor is connected to the ground, positive charges flow towards the ground and the potential $\mathrm{V}=0$.

(S)

After influence

$\stackrel{+}{(S)}$

After the influence, positive charges flow to ground and the conductor (C) will have a negative charge and zero potential. $\boldsymbol{V}_{\boldsymbol{C}}{ }^{\prime}=\mathbf{0}$
$V_{C}^{\prime}=V_{C}+V_{S / C}=0$
with V_{C} : is the potential of (C) before influence and VS/C: is the potential of (C) after influence of (S) on (C).
$V_{C}=\frac{k q_{C}}{R}$
$V_{S / C}=\frac{k Q_{S}}{d}$ with $\left(\mathbf{Q}_{\mathrm{S}}=+\mathbf{Q}\right)$
So $V_{C}^{\prime}=\frac{k q_{C}}{R}+\frac{k Q}{d}=0$
$\Rightarrow q_{C}=-\frac{Q R}{d}$ with $\mathrm{d}=\mathrm{OA}$

Exercise 3

Let's find Q1'and Q2' after influence:
By connecting the two conductors with a wire ; a single conductor is created with $\mathrm{Q}^{\prime} 1$ and $\mathrm{Q}^{\prime} 2$ are the charges of the two conductors.
After influence when this conductor is in electrostatic equilibrium:

- The potential is constant: $V_{1}^{\prime}=V_{2}^{\prime} \Rightarrow \frac{k \mathrm{Q}_{1}^{\prime}}{R_{1}}=\frac{k \mathrm{Q}_{2}^{\prime}}{R_{2}} \quad$ So $\frac{\mathrm{Q}_{1}^{\prime}}{R_{1}}=\frac{\mathrm{Q}_{2}^{\prime}}{R_{2}}$
- The total charge in the formed conductor is the sum of the charges of the two conductors, since the charge carried by the wire is neglected.

$$
\begin{aligned}
& \mathrm{Q}^{\prime}{ }_{1}+\mathrm{Q}^{\prime}{ }_{2}=\mathrm{Q}_{1}+\mathrm{Q}_{2} \\
& \left\{\begin{array} { c }
{ \frac { \mathrm { Q } _ { 1 } ^ { \prime } } { R _ { 1 } } = \frac { \mathrm { Q } _ { 2 } ^ { \prime } } { R _ { 2 } } } \\
{ \mathrm { Q } _ { 1 } ^ { \prime } + \mathrm { Q } _ { 2 } ^ { \prime } = \mathrm { Q } _ { 1 } + \mathrm { Q } _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{c}
\frac{\mathrm{Q}_{1}^{\prime}}{2}=\frac{\mathrm{Q}_{2}^{\prime}}{3} \\
\mathrm{Q}_{1}^{\prime}+\mathrm{Q}_{2}^{\prime}=25
\end{array}\right.\right. \\
& \Rightarrow\left\{\begin{array}{c}
\mathrm{Q}_{1}^{\prime}=2 \frac{\mathrm{Q}_{2}^{\prime}}{3} \\
2 \frac{\mathrm{Q}_{2}^{\prime}}{3}+\mathrm{Q}_{2}^{\prime}=25
\end{array} \text { so } \mathrm{Q}_{2}^{\prime}=15 \mu \mathrm{C}=\mathrm{Q}_{2} \text { et } \mathrm{Q}_{1}^{\prime}=10 \mu \mathrm{C}=\mathrm{Q}_{1}\right.
\end{aligned}
$$

The charges on the two conductors have not changed, so there has been no charge displacement, as the two conductors are far apart and the charge on the wire is negligible.

Exercise 4

1- C_{1} and C_{2} in series: $\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$
$C_{e q 1}=\frac{C_{1} C_{2}}{C_{1}+C_{2}} \Rightarrow \mathrm{C}_{\mathrm{eq} 1}=2 \mu \mathrm{~F}$
C_{3} et C_{4} in series: $\frac{1}{C_{e q 2}}=\frac{1}{C_{3}}+\frac{1}{C_{4}}$
$\Rightarrow \quad C_{e q 2}=\frac{C_{3} C_{4}}{C_{3}+C_{4}} \Rightarrow \mathrm{C}_{\text {eq } 2}=1,33 \mu \mathrm{~F}$
$C_{!} \because C_{2} \Rightarrow C_{e q}=C_{e a 1}+C_{e a 2}=3,33 \mu F \Rightarrow \mathbf{C}_{\text {eq }}=\mathbf{3}, \mathbf{3 3} \mu \mathbf{F}$
2- The voltage across the armatures of each capacitor:
$Q_{1}=Q_{2} \quad\left(C_{1}\right.$ and C_{2} in séries $)$

$$
C_{1} V_{1}=C_{2} \quad V_{2} \Rightarrow V_{1}=\frac{C_{2} V_{2}}{C_{1}}=2 V_{2}
$$

$\mathrm{V}_{1}+\mathrm{V}_{2}=90$ volt

$$
2 \mathrm{~V}_{2}+\mathrm{V}_{2}=90 \Rightarrow 3 \mathrm{~V}_{2}=90 \Rightarrow \mathbf{V}_{\mathbf{2}}=\mathbf{3 0} \text { volt } \Rightarrow \mathbf{V}_{\mathbf{1}}=\mathbf{6 0} \text { volt }
$$

$Q_{3}=Q_{4} \quad\left(\mathrm{C}_{3}\right.$ and C_{4} in séries $)$
$C_{3} V_{3}=C_{4} \quad V_{4} \Rightarrow V_{3}=\frac{C_{4} V_{4}}{C_{3}}=2 V_{4} \Rightarrow V_{3}+V_{4}=90$ volt
So
$2 \mathrm{~V}_{4}+\mathrm{V}_{4}=90 \Rightarrow 3 \mathrm{~V}_{4}=90 \Rightarrow \mathrm{~V}_{\mathbf{4}}=\mathbf{3 0}$ volt $\Rightarrow \mathbf{V}_{\mathbf{3}}=\mathbf{6 0}$ volt
3- the electrical charge carried by each capacitor.

$$
\begin{aligned}
& \mathbf{Q}_{1}=\mathbf{Q}_{2}=\mathbf{C}_{1} \quad \mathbf{V}_{1}=\mathbf{C}_{2} \quad \mathbf{V}_{2}=\mathbf{1 8 0 \mu} \mathrm{C} \\
& \mathbf{Q}_{3}=\mathbf{Q}_{4}=\mathbf{C}_{3} \quad \mathbf{V}_{3}=\mathbf{C}_{4} \quad \mathbf{V}_{4}=\mathbf{1 2 0 \mu} \mathrm{C}
\end{aligned}
$$

Exercise 4

1) The capacity of the two capacitors in parallel, $C_{23}=C_{2}+C_{3}=6 \mathrm{mF}$ and the capacity of the entire circuit:

$$
\begin{array}{r}
\frac{1}{C_{a b}}=\frac{1}{C_{1}}+\frac{1}{C_{23}} \\
C_{e q}=2,0 \mathrm{mF}
\end{array}
$$

2) The charge on the first capacitor is the same as the charge on the whole combination, because it's the only thing to which the left wire is connected. This charge can be found from the capacity.

$$
Q_{e q}=Q_{l}=C_{e q} \cdot V_{e q}=12 \mathrm{mC}
$$

There is a charge Q 1 on the opposite side of the first capacitor, which must also come from the next capacitors as they are equal to each other. Therefore,

$$
\begin{gathered}
Q_{2}=Q_{3}=(1 / 2) Q_{1 .} \\
Q_{1}=12 \mathrm{mC}, Q_{2}=\mathrm{Q}_{3}=6,0 \mathrm{mC}
\end{gathered}
$$

2) We have $V_{\mathrm{i}}=Q_{\mathrm{i}} / C_{i}$. hence $V_{I}=\left(\mathrm{Q}_{1} / \mathrm{C}_{1}\right)=4,0 \mathrm{~V}$

$$
\text { And } \quad V_{2}=\mathrm{V}_{3}=\left(\mathrm{Q}_{2} / \mathrm{C}_{2}\right)=2,0 \mathrm{~V}
$$

4) the capacity is:

$$
C=\frac{Q}{V}=\frac{Q}{E d} \quad \text { so } \quad \mathrm{C}=2.010^{-2} \mathrm{~F}
$$

5) Energie is:
$E_{p}=\frac{1}{2} C U^{2}=\frac{1}{2} \cdot Q U$ so $\mathrm{E}_{\mathrm{p}}=1810^{-9} \mathrm{~J}$

Supplementary exercise 1:

A 1- Equivalent capacity
$C_{23}=C_{2}+C_{3}=10+4=14 \mu F$

$\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{23}}+\frac{1}{C_{4}}=\frac{1}{2}+\frac{1}{14}+\frac{1}{7}=\frac{10}{14} \Rightarrow C_{e q}=1,4 \mu F$
2- Charges carried by capacitors
In a series connection: $Q_{A B}=Q_{C 1}=Q_{C 23}=Q_{C 4}$ avec $Q_{A B}=\operatorname{Ceq} U_{A B} U_{A B}=U_{C 1}+U_{C 23}+U_{C 4}$
$Q_{e q}=C_{e q} U \Rightarrow Q_{e q}=1,4 x 12=16,8 \mu C \quad \mathrm{U}=\mathrm{U}_{\mathrm{AB}}=12$ volt

$$
Q_{e q}=Q_{C_{1}}=Q_{C_{4}}=Q_{C_{23}}=16,8 \mu C
$$

And $\boldsymbol{U}_{\mathbf{2 3}}=\boldsymbol{U}_{\mathbf{2}}=\boldsymbol{U}_{\mathbf{3}} \Rightarrow \frac{Q C_{23}}{C_{23}}=\frac{Q_{C_{2}}}{C_{2}}=\frac{Q C_{3}}{C_{3}}$
$\Rightarrow Q_{C_{2}}=\frac{Q C_{23} x C_{2}}{C_{23}}=\frac{16,8 \times 10}{14}=12 \mu C$ and $Q_{C_{3}}=\frac{Q C_{23} x C_{3}}{C_{23}}=\frac{16,8 \times 4}{14}=4,8 \mu \mathrm{C}$
1- Capacitors voltage
$U_{1}=\frac{Q C_{1}}{C_{1}}=\frac{16,8}{2}=8,4 \mathrm{Volt}$ and $U_{4}=\frac{Q C_{4}}{C_{4}}=\frac{16,8}{7}=2,4 \mathrm{Volt}$ and $U_{3}=U_{2}=12-8,4-2,4=1,2 \mathrm{Volt}$
B. The capacity of capacitor
$\mathrm{V}=\int \mathrm{Edl}=\mathrm{E} \int_{\mathrm{A}}^{\mathrm{B}} \mathrm{dl}=\mathrm{Ed}$

$$
C=\frac{Q}{V}=\frac{Q}{E d} \quad \text { so } C=\frac{30 \times 10^{-3}}{100 \times 0,015}=20.10^{-3} \mathrm{~F}
$$

C. The energie is :

$$
E_{p}=\frac{1}{2} C U^{2}=\frac{1}{2} \cdot Q U \text { so } \mathrm{E}_{\mathrm{p}}=1810^{-9} J
$$

Supplimentary Exercise 2:

1. $Q_{C 1}=C_{1} U_{A D} \Rightarrow U_{A D}=\frac{Q_{C 1}}{C_{1}}=\frac{10}{4}$
$\Rightarrow U_{A D}=2.5 \mathrm{Volt}$

2. $Q_{C 2}=C_{2} U_{A D}=3.5 x 2.5=8.75 \mu c$ $Q_{C 3}=C_{3} U_{A D}=2.5 x 2.5=6.25 \mu c$
3. $U_{B D}=2$ Volt
$Q_{C 4}=C_{4} U_{B D}=5 x 2=10 \mu C$
and $Q_{C 5}=C_{5} U_{B D}=5 x 2=10 \mu C$
4. Let's calculate C_{eq} :
$\mathrm{C}_{123}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}=4+3,5+2,5=10 \mu \mathrm{~F}$
$\mathrm{C}_{45}=\mathrm{C}_{4}+\mathrm{C}_{5}=5+5=10 \mu \mathrm{~F}$
$\mathrm{C}_{78}=\mathrm{C}_{7}+\mathrm{C}_{8}=5+5=10 \mu \mathrm{~F}$
$\frac{1}{C_{e q 1}}=\frac{1}{C_{123}}+\frac{1}{C_{45}}=\frac{1}{10}+\frac{1}{10}=\frac{2}{10} \Rightarrow C_{e q 1}=5 \mu F$

$$
\frac{1}{C_{e q 2}}=\frac{1}{C_{78}}+\frac{1}{C_{6}}=\frac{1}{10}+\frac{1}{10}=\frac{2}{10 \Rightarrow C_{e q 2}=5 \mu F}
$$

$$
\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{\mathrm{eq} 1}+\mathrm{C}_{\mathrm{eq} 2}=5+5=10 \mu \mathrm{~F}
$$

5. Energy stored in the capacitor C_{1} :

$$
E_{C 1}=\frac{1}{2} C_{1} U_{A D}^{2}=\frac{1}{2} 4(2,5)^{2}=12,5 \mu j
$$

