First name:
Last name:

Face-To-Face Test

Consider two infinitely long coaxial cylinders of radius R_{1} and R_{2} such that $\mathrm{R}_{1}<\mathrm{R}_{2}$. The first of radius R_{1}, charged with surface density $+\boldsymbol{\sigma}$; and the second of radius R_{2}, charged with surface density $\mathbf{+ 2 \sigma}$.

1- Calculate the electrostatic field outside the system.
2- Deduce the electrostatic potential outside the system.
3- Tracer l'allure de E(r).

Correction of test:

1- The field : Consider a cylinder of radius r and height h as a Gauss surface.
Gauss's theorem : $\varphi=\iint \vec{E} \cdot \overrightarrow{d s}=\frac{\sum Q_{\text {int }}}{\varepsilon_{0}}$ $\varphi=\iint \vec{E} \cdot \overrightarrow{d s}=2 \iint \vec{E} \cdot \overrightarrow{d s_{\text {base }}}+\iint \vec{E} \cdot \overrightarrow{d s_{l a t}}$
$\vec{E} \therefore \overrightarrow{d s_{\text {lat }}} \quad$ et $\quad \vec{E} \perp \overrightarrow{d s_{\text {base }}} \Rightarrow \iint \vec{E} \cdot \overrightarrow{d s_{\text {lat }}}=0$
so : $\varphi=\iint \vec{E} \cdot \overrightarrow{d s_{l a t}}=\bar{E} \cdot \int \overrightarrow{d s_{l a t}}=E . S_{l a t}=E 2 \pi r h$

For : $r \geq \boldsymbol{R}_{\mathbf{2}}$

$$
Q_{i n t}=Q_{1}+Q_{2}
$$

$Q_{1}=\sigma 2 \pi R_{1} h \quad$ and $\quad Q_{2}=2 \sigma 2 \pi R_{2} h$ donc $\boldsymbol{Q}_{\text {int }}=\sigma 2 \pi h\left(R_{1}+2 R_{2}\right)$

$$
E_{3} 2 \pi r h=\frac{\sigma 2 \pi h\left(R_{1}+2 \cdot R_{2}\right)}{\varepsilon_{0}} \Rightarrow \boldsymbol{E}_{3}=\frac{\boldsymbol{\sigma}\left(\boldsymbol{R}_{1}+2 \cdot \boldsymbol{R}_{2}\right)}{\varepsilon_{0}} \frac{\mathbf{1}}{r}
$$

2- The potentiel

$\vec{E}=-\overrightarrow{\operatorname{grad} V}$
$E=E(r) \Rightarrow E=-\frac{d V}{d r} \Rightarrow V=-\int E . d r$
$V_{3}=-\int E_{3} \cdot d r=-\frac{\boldsymbol{\sigma}\left(\boldsymbol{R}_{\mathbf{1}}+2 . \boldsymbol{R}_{\mathbf{2}}\right)}{\varepsilon_{0}} \int \frac{\mathbf{1}}{\boldsymbol{r}} . d r=-\frac{\boldsymbol{\sigma}\left(\boldsymbol{R}_{\mathbf{1}}+\mathbf{2} . \boldsymbol{R}_{\mathbf{2}}\right)}{\varepsilon_{0}} \boldsymbol{\operatorname { l n } r}+\boldsymbol{C}_{\mathbf{3}}$

