First name:
Last name:

Face-To-Face Test

Let be two concentric spheres with center O and respective radii R_{1} and R_{2} such that $\mathbf{R}_{\mathbf{1}}<\mathbf{R}_{\mathbf{2}}$.
The sphere of radius R_{1} is surface-loaded with density $\boldsymbol{\sigma}$. The second of radius R_{2} carries a surface distribution of density $\boldsymbol{\sigma}^{\prime}$.
1- Using GAUSS' theorem find the expression of the electrostatic field $\mathrm{E}(\mathrm{r})$ outside the system.

2- Deduce the expression of the electric potential $\mathrm{V}(\mathrm{r})$ outside the system.
3- Tracer l'allure de E(r) et V(r).

Correction of Test:

The Gaussian surface is a sphere with center O and radius r . For reasons of symmetry, the field is radial and constant at any point on the Gaussian surface.

$$
\emptyset=\oiint \vec{E} \cdot \overrightarrow{d s}=\frac{\sum Q_{i n t}}{\varepsilon_{0}}
$$

$\vec{E} / / \overrightarrow{d s} \quad$ so $: \oiint \vec{E} \cdot \overrightarrow{d s}=\iint E . d s=E \iint d s=E . S=E 4 \pi r^{2} \Rightarrow \boldsymbol{E} 4 \pi r^{2}=\frac{\sum \boldsymbol{Q}_{\text {int }}}{\varepsilon_{0}}$
1- The electrostatic field $\mathrm{E}_{3}(\mathrm{r})$:.
We have 2 cases

$\mathbf{3}^{\text {rd }}$ case $r \geq \mathbf{R}_{2}$

$Q_{\text {int }}=Q_{1}+Q_{2}$ with $Q_{1}=\sigma 4 \pi R_{1}^{2}$ and $d q_{2}=\sigma^{\prime} d s \Rightarrow Q_{2}=\sigma^{\prime} 4 \pi R_{2}^{2}$

so $Q_{\text {int }}=\sigma 4 \pi R_{1}^{2}+\sigma^{\prime} 4 \pi R_{2}^{2}$
and $E_{3}=\frac{\sigma 4 \pi R_{1}^{2}+\sigma / 4 \pi R_{2}^{2}}{4 \pi r^{2} \varepsilon_{0}}$
then $\quad E_{3}=\frac{\sigma R_{1}^{2}}{\varepsilon_{0} r^{2}}+\frac{\sigma R_{2}^{2}}{\varepsilon_{0} r^{2}}$
The electrostatic potential $\mathrm{V}_{3}(\mathrm{r})$.
$\vec{E}=-\overrightarrow{g r a d} v \Rightarrow E=-\frac{d v}{d r} \quad$ so $v=-\int E d r$
$\mathbf{3}^{\text {rd }}$ case $\mathbf{r} \geq \mathbf{R}_{2}$
$E_{3}=\frac{\sigma R_{1}^{2}+\sigma \prime R_{2}^{2}}{r^{2} \varepsilon_{0}} \Rightarrow v_{3}=-\frac{\sigma R_{1}^{2}+\sigma \prime R_{2}^{2}}{\varepsilon_{0}} \int \frac{d r}{r^{2}}=\frac{\sigma 4 R_{1}^{2}+\sigma \prime R_{2}^{2}}{\varepsilon_{0} r}+C_{3}$
Infinite potential $(\mathrm{r} \rightarrow \infty) \mathrm{v}=0$ so $\lim _{r \rightarrow \infty} v=0$
Then $\mathrm{C}_{3}=0$

$$
\text { And } \boldsymbol{v}_{3}=\frac{\sigma R_{1}^{2}+\sigma \prime R_{2}^{2}}{\varepsilon_{0} r}
$$

