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Preface 

 
This manuscript is intended for first-year students in the common core curriculum preparing 
for a bachelor's degree in commercial, economic, and management sciences. It consists of 
three chapters covering the entire program of Mathematics 2 module. 

The first chapter deals with solving first and second-order differential equations. 

The second chapter explains fundamental and advanced concepts related to matrices. It also 
aims to provide readers with a thorough understanding of matrix operations and properties. It 
also introduces essential notions such as calculating the determinant and the inverse of a 
square matrix. 

Finally, the last chapter describes Cramer's linear systems of equations and presents various 
solution methods. Additionally, non-Cramer systems are also addressed in this section. 

We are aware that our work can always be improved, and we strongly encourage readers to 
provide us with their feedback or suggestions to enhance our document 
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 Chapter 01 :   

 Différential Equations  
 

Definition 01:  

An Ordinary Differential Equation (ODE) of order 𝑛 is an equation where the unknown is a 

function 𝑦(𝑡). It is of the form 

𝐹(𝑡, 𝑦, 𝑦′, 𝑦′′, …   , 𝑦(𝑛)) = 0 , 

 With : 

• 𝐹:is a continues function. 

• 𝑦 : The unknown function of the variable t (to be determined) 

• 𝑡 ∶  is the real variable (in physics, representing time). 

• 𝑛 ∶  It is the highest order of the derivative of 𝑦, which is also the order of the ODE. 

Definition 02 : A first-order ordinary differential equation (ODE) is of the form: 

𝑦′ = 𝐹(𝑡, 𝑦)                      … . (1) 

Remark : To find the solution of an ODE, one must search for a function y(t) that satisfies 

this ODE, according to each type. Integration is the process that allows us to do this. 

1.  Separable Variable Equation: 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 03:  The ODE (1) is said to be in separated variables form if it is of the form: 

𝑓(𝑦)𝑑𝑦 = 𝑔(𝑡)𝑑𝑡 

Where 𝑓  and 𝑔  are two real (continuous) functions of the real variable. 

Resolution method: To find the solution from (1), you need to follow the following steps:  

1. Use the relation    𝒚′ =
𝑑𝒚

𝑑𝑡
. 

2. Separate the 𝒚 terms from the 𝒕 variable: Put the 𝑦 terms on one side and what depends on 

𝑡 on the other side. 

3. Integrate both sides of the equation with respect to both 𝒕  and 𝒚. 

Example:  Solve the following ODE: 

𝒚𝟐 − (𝟏 + 𝟑𝒕)𝒚′ = 𝟎      …… (𝑬) 

• From the relation      𝒚′ =
𝑑𝒚

𝑑𝑡
 , we obtain : 

𝑦2 − (1 + 3𝑡)𝑦′ = 0  ⇔   𝑦2 − (1 + 3𝑡)
𝑑𝒚

𝑑𝑡
= 0  

 



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Homogeneous Differential Equation: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

• To begin, we separate the variables, we have 

𝑦2 − (1 + 3𝑡)𝑦′ = 0      ⇔  𝑦2 = (1 + 3𝑡)
𝑑𝒚

𝑑𝑡
 

                                                  ⇔
1

(1 + 3𝑡)
  =

1

𝑦2
𝑦′ 

                                ⇔   
1. 𝑑𝑡

(1 + 3𝑡)
  =

1

𝑦2
𝑑𝑦 

• By integrating each side of the equation: 

∫
1. 𝑑𝑡

(1 + 3𝑡)
  = ∫

1

𝑦2
𝑑𝑦      ⇔

1

3
 𝑙𝑛|1 + 3𝑡| + 𝑐 = −

1

𝑦
 

• Finally, the solution is:  

𝒚 = −
𝟏

 
1
3 𝑙𝑛

|1 + 3𝑡| + 𝑐
 

Definition 04 : A homogeneous differential equation is written as: 

𝑦′ = 𝑓 (
𝑦

𝑡
)… . . (2) 

Resolution method: Let's consider the differential equation     𝑦′ = 𝑓 (
𝑦 

𝑡
),  

1. Introduce the change of variable :  𝒖(𝒕) =  
𝒚(𝒕) 

𝒕
     ⇒    𝑦(𝑡) = 𝑡. 𝑢(𝑡) 

2. Use the derivative:  𝒚′ = 𝒕. 𝒖′(𝒕) + 𝒖(𝒕) 

3. Replace the values of 𝑢 and 𝑦′ in equation (2).  

4. Use the method of separated variables to solve the resulting equation.  

5. Find the final solution 𝑦(𝑡).  

Example: Solve the following ODE:     

𝑡𝑦′ + 𝑦 = 𝑡 

Solution : 

We have,  

𝑡𝑦′ + 𝑦 = 𝑡               

In order to express(𝑬) in the form 𝒚′ = 𝒇(
𝒚 

𝒕
), We need to divide everything by t. 

𝑡𝑦′ + 𝑦 = 𝑡        ⇔      
𝑡. 𝑦′

𝑡
+
𝑦

𝑡
 =
𝑡

𝑡
 

⇒     𝑦′ = 1 −
𝑦

𝑡  
. . .  (𝑬) 
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Let's introduce a variable transformation 

𝑢(𝑡) =  
𝑦(𝑡) 

𝑡
     ⇒    𝑦(𝑡) = 𝑡. 𝑢(𝑡) 

The derivative is  𝑦′ = 𝑡. 𝑢′(𝑡) + 𝑢(𝑡) 

By substituting into (E)  

𝑦′ = 1 −
𝑦

𝑡  
 

We get ,  

𝑡. 𝑢′(𝑡) + 𝑢(𝑡) = 1 − 𝑢     

⇒   𝑡. 𝑢′(𝑡) = 1 − 2𝑢  

• Using the method of separated variables, we solve the equation:  

 𝑡. 𝑢′(𝑡) =
1

2
− 2𝑢  

 Remark that  𝑢′(𝑡) =
𝑑𝑢

𝑑𝑡
,  so ,  

𝑡. 𝑢′(𝑡) = 1 − 2𝑢       ⇔  𝑡.
𝑑𝑢

𝑑𝑡
. =    1 − 2𝑢  

⇔
𝑑𝑢

1 − 2𝑢
. =
𝑑𝑡

𝑡
 

We integrate both sides. 

∫
𝑑𝑢

1 − 2𝑢
.= ∫

𝑑𝑡

𝑡
 

−1

2
𝑙𝑛|1 − 2𝑢| = 𝑙𝑛|𝑡| + 𝑐1 

Then ,  

𝑙𝑛|1 − 2𝑢| = −2𝑙𝑛|𝑡| + 𝑐     ⇔     𝑒𝑙𝑛|1−2𝑢| = 𝑒−2𝑙𝑛|𝑡|+𝑐   

                                                     ⇔     |1 − 2𝑢| = 𝑒−𝑙𝑛|𝑡|
2
. 𝑒𝑐 

                                                     ⇔     1 − 2𝑢 = ±𝑒
𝑙𝑛
1
𝑡2 . 𝑒𝑐 

                                                     ⇔ 𝑢 =
−1

2
(±

1

𝑡2
. 𝑒𝑐 − 1) 

Then the solution is  

𝑢(𝑡) =
1

2
(
𝑘

𝑡2
+ 1)          𝑤ℎ𝑒𝑟𝑒  𝑘 = ∓𝑒𝑐 

• In order to find  𝒚(𝒕), we simply substitute the value of u into the solution, such that,  

𝑢(𝑡) =  
𝑦(𝑡) 

𝑡
=
1

2
(
𝑘

𝑡2
+ 1) 

  Finally, the solution is  :  

𝑦(𝑡) =
𝑡

2
(
𝑘

𝑡2
+ 1) =

𝑘

2𝑡  
+
𝑡

2
,         𝑘 ∈ ℝ 
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1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. 2nd  Order  Differential  Equations   

Definition : A second-order linear differential equation with constant coefficients has the form 

    𝑎. 𝑦′′ + 𝑏𝑦′ + 𝑐. 𝑦  = 𝑓(𝑡)                (E) 

Where :  𝑎, 𝑏 and 𝑐 are a reals constants   with 𝑎 ≠ 0,   ∀ 𝑡 ∈ ℝ. 

 And  𝑓(𝑡)  is the second member. 

if 𝑓(𝑡) = 0, then  ( E) becomes an equation without a second member (EWSM), called a linear 

homogeneous equation, denoted by(Eℎ) ∶ 

𝑎. 𝑦′′ + 𝑏𝑦′ + 𝑐. 𝑦  = 0           (Eℎ)  

•  

 
Resolution method: 

The general solution y of  (𝐸) is the sum of the homogeneous solution 𝑦 ℎ  of  (Eℎ)  and a particular 

solution (𝑦𝑝)𝑜𝑓 (E):  such that 

𝒚  = 𝒚 𝒉 + 𝒚 𝒑 

1. How to find  𝒚 𝒉? 

Let the homogeneous equation be  

𝑎. 𝑦′′ + 𝑏𝑦′ + 𝑐. 𝑦  = 0 

a) Write the caracteristic equation:  𝑎. 𝑟2 + 𝑏. 𝑟 + 𝑐 = 0. 

b) Findthe root 𝑟 according to the sign of ∆ given in the following table 

where  ∆= 𝑏2 − 4𝑎𝑐 :      ℎ𝑖𝑒𝑟 𝑎 = 1  

 

Sign of ∆ The roots : 𝒓𝒊 The soltion  𝒚 𝒉 

 

 

∆ > 0 

 There is 𝑡𝑜𝑤 𝑟𝑜𝑜𝑡𝑠 

𝑟1 =
−𝑏 − √∆

2𝑎
   

 

𝑟2 =
−𝑏 + √∆

2𝑎
 

 

 

𝒚 𝒉 = 𝐶1𝑒
𝑟1.𝑡 + 𝐶2𝑒

𝑟2.𝑡 

∆ = 0 𝑟0 =
−𝑏

2𝑎
 𝒚 𝒉 = (𝐶1𝑡 + 𝐶2)𝑒

𝑟0.𝑡 

 

2. How to find the particular solution   𝒚 𝒑  ?  

We determine the particular solution 𝑦 𝑝 of (E1), according to the form of the second member 𝑓(𝑡), 

and using the identification method of coefficient, the following table shows how to choose the form of   

𝑦 𝑝 
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Exemple :  𝑆𝑜𝑙𝑣𝑒   𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (𝐸)𝑔𝑖𝑣𝑒𝑛 𝑏𝑦  

 𝑦" + 2𝑦′ = 2𝑒−2𝑥       ( 𝐸 ) 

 

Solution : 

 

•  Find the homogeneous solution of  𝒚" + 𝟐𝒚′ = 𝟎 

The characteristic equation associate to ( E ) is:  

𝑟2 + 2𝑟 = 0 

Wich  has tow roots : 𝑟1 = 0 𝑎𝑛𝑑 𝑟2 = −2 

Then , the solution 𝑦 ℎ is  

𝑦 ℎ = 𝑘1 + 𝑘2𝑒
−2𝑥    𝑤ℎ𝑒𝑟𝑒 𝑘1𝑎𝑛𝑑 𝑘2 ∈ ℝ 

• Find the particular solution of  ( E ) 

 

Hier 𝛼 = −2, then 𝑦 𝑝 tak the form  

𝑦 𝑝 = 𝑘𝑥𝑒
−2𝑥   ,         𝑘 ∈ ℝ      

Then the derivative of 𝑦 𝑝 gives  

 
By substituting into ( E)  

 
Using the identification method, it follow : 

 
Then ,  

𝑦 𝑝 = −𝑥𝑒
−2𝑥    

Finally , the general solution of  ( E ) is  

𝑦 = 𝑦ℎ + 𝑦 𝑝 = 𝑘1 + 𝑘2𝑒
−2𝑥    − 𝑥𝑒−2𝑥    

 𝑤ℎ𝑒𝑟𝑒 𝑘1𝑎𝑛𝑑 𝑘2 ∈ ℝ 

 

 

f(t) takes the form : 𝑦 𝑝 

𝒇(𝒕) = 𝑷(𝒕)𝒆𝜶𝒕  𝑤𝑖𝑡ℎ  𝑃(𝑡) is a polynomial of 

degree 𝑛, where 𝛼 is a real number, and 𝑚 is not a 

root of 𝑷 

𝒚 𝒑 =  𝑸(𝒕)𝒆𝜶𝒕 
 𝑄(𝑡) is a polynomial  𝑑𝑒𝑔(𝑄) = 𝑛  

𝒇(𝒕) = 𝑷(𝒕)𝒆𝜶𝒕   𝑤𝑖𝑡ℎ  𝑃(𝑡) is a polynomial of 

degree 2, 𝛼 is a real number, and 𝒎 Is a simple root 
𝒚 𝒑 =   𝑸(𝒕). 𝒕. 𝒆𝜶𝒕  

𝒇(𝒕) = 𝑷(𝒕)𝒆𝜶𝒕      𝑤𝑖𝑡ℎ  𝑃(𝑡) is a polynomial of 

degree 2, 𝛼 is a real number, and 𝒎 Is a double root 
𝒚 𝒑 =   𝑸(𝒕). 𝒕𝟐. 𝒆𝜶𝒕  

 

3. Donne la solution finale 𝒚(𝒕) =  𝒚 𝒉 + 𝒚 𝒑. 
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Chapitre 02 :   

The Matrices  

 
                  The matrices play a fundamental role in economics, as they are used to represent 

the relationships between different economic variables such as production or consumption. 

They are utilized in various fields including the analysis of inter-sectoral exchanges, inventory 

management, or solving economic equations. Matrices help to understand and analyze 

economic systems effectively. 

 

I. Definitions :  

• A matrix is a table with 𝑛 rows and 𝑝 columns. It represents data that consists of real 

numbers (called coefficients or terms).  

Matrices are often denoted by uppercase letters such as A, B, C, M, ..., and their 

coefficients are represented by lowercase letters. 

 

• We denoted by  𝑎𝑖𝑗 the coefficient of the matrix A, situated on the i-th row of A and at 

the  j-th  colunn it represents the  numbers that appear inside the matrix. Then, the A is 

Witten by  

 

• The dimension of the matrix (called also the size, the order) :  

 To describe the size of this matrix is to state how many rows and columns it has. Rows 

are listed first, followed by columns.  is denoted by size (.)   

size(. ) =  𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 ×      𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑐𝑜𝑙𝑢𝑚𝑛𝑠 

Exampls :  

• The size of the matrix    𝐴 = (
1 −2 0
3 −1 2

)  𝑖𝑠  2 × 3 
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• Let   𝐵 = (
−1 0 2
−2 0 0
1 1 3

)  , 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝐵 𝑖𝑠 3  

 

 

• 𝐿𝑒𝑡  𝐶 = (
−1 0
−2 4
1 1

)   𝑎𝑛𝑑  size(𝐶) = 3 × 2 

Definition 02 :  

• A zero matrix is a matrix where all its coefficients are zeros.  
• A Square matrix Is a matrix where the number of rows is equal to the number of 

columns 

•  A row matrix is a matrix where the number of rows is equal to 1. It is also called a 

"row vector". 

• A column matrix is a matrix where the number of columns is equal to  

Exampls :  

• 𝐴 = (4 −2 0) 𝑖s row matrix  

• 𝐵 = (
−1 0 2
−2 0 0
1 1 3

)  𝑖𝑠 𝑎 𝑠𝑞𝑢𝑎𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑥, 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑖𝑠   3 × 3, 

  in order to simplify , we can say , 𝐵 𝑖𝑠 𝑎 𝑠𝑞𝑢𝑎𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑟𝑑𝑒𝑟  3d' ordre 3.  

• 𝐶 = (

5
6
3
4

)   𝑖𝑠 𝑎  𝑐𝑜𝑙𝑢𝑚𝑛 𝑚𝑎𝑡𝑟𝑖𝑥. 

Definition 03 :   

The main diagonal of a matrix refers to the diagonal that connects the top-left corner to 

the bottom-right corner. In other words, the  main diagonal elements have the same row 

and column numbers are : 𝑎11 , 𝑎22, 𝑎33, … . 

Exemple :  

Let  

𝐴 = (

1 −1 −3 −5
7 3 −3 0
0 8 2 0
−1 6 0 −8

) 

The diagonal éléments of  A are : 𝑎11 = 1 , 𝑎22 = 3, 𝑎33 = 2,    and  𝑎44 = −8. 

 

 



8 
 

Definition 03 :   

The diagonal matrix is a square matrix where all non-diagonal coefficients (those not 

on the diagonal) are zero. 

 

Example :  

Let  

𝐴 = (

−1 0 0 0
0 3 0 0
0 0 0 0
0 0 0 −8

)  ,           𝐵 =  (

3 0 0

0
1

2
0

0 0 5

),    

 

 𝐶 = (
1 0 1
0 2 0
0 0 −1

)     𝑒𝑡             𝑀 = [
2 0
0 −3

] 

𝐴, 𝐵 𝑎𝑛𝑑   𝑀 are a diagonal matrices, but C is not. 

Definition 04 :  

An upper triangular matrix is a square matrix where all coefficients below the diagonal 

are zero 

 

Example: Let the matrices:  

𝐴 = (

−1 3 0 −1
0 3 2 −2
0 0 0 0
0 0 0 −8

)  ,           𝐵 =  (
3 1 3
0 0 2
9 0 5

),    
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We remark that  𝐴 is an upper triangular matrix  supérieure, however  𝐵 is not,  

Because there is a coefficient below the diagonal that is not zero, which is 𝑎31 = 9 ≠ 0 

Definition 05 :  

A lower triangular matrix is a square matrix where all coefficients above the diagonal 

are zero. 

 

Exemple :  

Let the matrices  

𝐴 = (

−1 0 0 0
5 1 0 0
−3 0 2 0
2 0 7 6

)  ,    𝑎𝑛𝑑       𝐶 =  (
4 0 0
8 1 4
9 −2 0

),    

 

We remark that A is a lower triangular matrix; however, C is not, because there is a 

coefficient above the diagonal that is not zero, namely 𝑎23 = 4 ≠ 0. 

 

Définition 06 :  

An identity matrix is a diagonal matrix where all the diagonal elements are equal to 1. It is 

denoted by 𝐼𝑛 where n is the order of the matrix. 

Example :  

Let  

𝐼3 = (
1 0 0
0 1 0
0 0 1

) ,           𝐼2 = (
1 0
0 1

),    

      We notice that:  

o 𝐼3  is an identity matrix of order 3(in  ℝ3 

o 𝐼2   is an identity matrix of order 2  (in  ℝ2).    
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II. Elementary Operations with Matrices: 

We consider the positive natural numbers 𝑛1, 𝑛2 , 𝑝1 𝑒𝑡 𝑝2.  

Let A be a matrix of dimension: 𝑛1 × 𝑝1 and  B Another matrix of dimension: 𝑛2 × 𝑝2  . 

1) Equality: (=  ( المساواة  

We say that two matrices are equal if these two conditions are satisfied: 

• They have the same dimension 

• Any term  𝑎𝑖𝑗 = 𝑏𝑖𝑗 for each i, j. 

Exercise :  Let :  

𝐴 = (
1 −2 0
3 −1 2

)      𝑒𝑡  𝐵 = (
𝑎 + 2 −2 0
1 + 𝑑 4 − 𝑐 2

) 

            Find the values of th reals :  a, b and  c  such that the matrices  A and  B are equals  

 

Solution : 

          For A and B to be equal, it is necessary that: 

• 𝑑𝑖𝑚(𝐴) = (2,3)  =  𝑑𝑖𝑚(𝐵)  

• The termes satisfy  

𝑎 + 2 = 1    ⟹ 𝑎 = −1 

4 − 𝑐 =  −1   ⟹ 𝑐 = 5 

1 + 𝑑 = 3   ⟹ 𝑑 = 2 

2) Transposition 

We call the transpose of 𝐴, the matrix denoted by 𝑡𝐴  (𝑜𝑢 𝑏𝑖𝑒𝑛 𝐴𝑇), obtained by writing the 

rows of 𝐴 as columns. 

Example :  

The matrix transpose of   𝐴 = (
𝟏 𝟒 𝟎
3 −1 2

)    𝑖𝑠     𝑡𝐴 = (
𝟏 3
𝟒 −1
𝟎 2

)     

 

3) Addition and Subtraction (+, -): 

In order to compute the sum 𝐴 + 𝐵, the following condition must be satisfied:  

𝑠𝑖𝑧𝑒(𝐴) = 2 × 3 =  𝑠𝑖𝑧𝑒(𝐵). 

Additionally,  𝐴 + 𝐵 is computed by adding the terms of 𝐴 to the elements of 𝐵 located at the 

same position. 
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Exercise :  

Let be :  

𝐴 = (
1 −2 0
3 −1 2

) ,     𝐵 = (
−3 1 4
−2 1 −5

)    𝑎𝑛𝑑     𝑀 =   (

3 0

−3
1

2
2 2

),      

Compute the matrices    𝐴 + 𝐵  𝑎𝑛𝑑   , 𝐴 + 𝑀  

Solution : 

Since  𝑑𝑖𝑚(𝐴) =  𝑑𝑖𝑚(𝐵) = 2 × 3, then we can calculate 𝐴 + 𝐵 , indeed:  

 

𝐴 + 𝐵 = (
1 − 3 −2 + 1 0 + 4
3 − 2 −1 + 1 2 − 5

) =  (
−2 −1 4
1 0 −3

)   

 

For 𝐴 +𝑀, we cannot compute this sum because 

𝑑𝑖𝑚(𝐴) = 2 × 3 ≠  𝑑𝑖𝑚(𝐵) = 3 × 2 

Therefore, the sum 𝐴 +𝑀 does not exist. 

Remark :  

In the case where we want to find the difference of the two matrices, 𝐴 𝑎𝑛𝑑 𝐵, we 

follow the same process, but we need to use element-wise subtraction. 

4) Product ( ×) الجداء : 

Definition 07 (scalar multiplication) :  

Let 𝑘  be a real number (a constant). The product  𝑘. 𝐴   is the matrix obtained by 

multiplying each element of matrix 𝐴  by  𝑘  

Exemple :  Let 

𝐴 = (
1 −2 0
3 −1 2

),      

The  scalar multiplication of matrix  is 3A  and ,  

3. 𝐴 = (
1 × 3 −2 × 3 0 × 3
3 × 3 −1 × 3 2 × 3

) = (
3 −6 0
9 −3 6

),      

 

Définition 08 : (Matrix Multiplication) :  

 

Let  𝑚, 𝑛 𝑎𝑛𝑑  𝑝  be integers. Let 𝐴 be a matrix of size 𝑚 × 𝑛,  and 𝐵 be a matrix of size 

(𝑛 × 𝑝). 
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The matrix product 𝐴 × 𝐵 is a matrix of dimension (𝑚, 𝑝)  obtained by calculating the 

product of 𝐴 by the columns of 𝐵. 

 

With  

 

 

 

Example :  

     Let the matrices :  

𝐴 = (
1 −2 0
3 −1 2

) ,          𝐵 = (
2 1
4 −1
−1 5

)       𝑎𝑛𝑑        𝐶 =  (
1 4
1 −5

)    

We notice that:  

• Since the number of columns of 𝐴 =  3 = the number of rows of 𝐵, then we can 

compute the matrix product 𝐴𝐵 . 

Moreover, the size of the resulting matrix 𝐴𝐵  is 2 × 2, and the calculation gives: 

𝐴𝐵 = (
−6 3
0 14

) 

• We cannot compute the matrix product 𝐴𝐶  because the number of columns of 𝐴 is 3, 

while the number of rows of 𝐶 is 2, so: 

the number of columns of A is not equal to the number of rows of B. 

the number of columns of  𝐴 ≠  the number of rows of  𝐵 

         Therfore 𝐴𝐶 doesn’t exist. 
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Remarks :  

• The matrix product is not commutative. In other words, 𝐴𝐵 ≠ 𝐵𝐴.  

• There is no specific method for computing the power of a matrix. 𝐴𝑛. It is 

computed using matrix multiplication as follows: 

𝐴𝑛 = 𝐴. 𝐴. 𝐴… . 𝐴⏟      
𝑛 𝑓𝑜𝑖𝑠

   

                           And this can only be done if matrix 𝐴 is square. 

Properties 

▪  𝑡(𝐴. 𝐵) =  𝑡𝐵.  𝑡𝐴 

▪ 𝐴. 𝐼𝑛 = 𝐴 

▪ 𝑘. 𝐴 = 𝐴. 𝑘        𝑤𝑖𝑡ℎ      𝑘 ∈ ℝ. 

 

III. Déterminant d’une matrice carrée : 

Let's consider 𝐴 a square matrix of order 𝑛 

𝐴 =

(

 
 

𝑎11 … 𝑎1𝑗 … 𝑎1𝑛
⋮ ⋱ ⋮ ⋮ ⋮
𝑎𝑖1 … 𝑎𝑖𝑗 … 𝑎𝑖𝑛
⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑛1 … 𝑎𝑛𝑗 … 𝑎𝑛𝑛)

 
 

 

Definition :  

The determinant of a square matrix 𝐴 is a number (a value) denoted by 𝑑𝑒𝑡 (𝐴)  𝑜𝑟   |𝐴| .  

 To learn the method of calculating the determinant, let's start with the simplest case, which is 

matrices of size 2 × 2 . 

1) Determinant of a matrix order 2 

when 𝑛 = 2, the matrix A is structured as follows 

𝐴 = ( 
𝑎11 𝑎12
𝑎21 𝑎22

) 

In this case, the determinant of 𝐴 is a cross product such that: 

𝑑𝑒𝑡(𝐴) = |
𝑎11 𝑎12
𝑎21 𝑎22

| = 𝑎11. 𝑎22 − 𝑎12. 𝑎21 

Examples : 

Let   

𝐴 = ( 
−3 2
−1 4

)       𝑎𝑛𝑑      𝐵 =  ( 
2 3
−4 −6

)       

Then,  
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• 𝑑𝑒𝑡(𝐴) = |
−3 2
−1 4

| = (−3). 4 − (−1). 2 = −10 

 

• 𝑑𝑒𝑡(𝐵) = |
2 3
−4 −6

| = (2). (−6) − (−4). (3) = 0. 

 

Now, let's see how to calculate the determinant of a matrix of dimension greater than 2. 

2) Determinant matrix order 𝒏, (𝒏 ≥ 𝟑) 

Definition : (the minor)  

We call   𝑀𝑖𝑗 a minor of 𝐴 is the determinant of the matrix formed by removing the 

𝑖 − 𝑡ℎ row and the 𝑗 − 𝑡ℎ column from 𝐴. It is also referred to as the (𝑖, 𝑗) − 𝑡ℎ minor 

of A. 

Exemple : 

Let  𝐴 be a matrix  :  

𝐴 = (
4 1 2
3 1 4
−2 −2 0

),    

▪ The minor  𝑀12 is the determinant obtained by eliminating the 1st row and the 2nd 

column of matrix A, indeed: 

𝑀12 = |
3 4
−2 0

| = 8 

▪ The minor  𝑀22 is the determinant obtained by eliminating the  2nd  row and the 2nd  

column of the matrix  : 

𝑀22 = |
4 2
−2 0

| = 4 

▪ The minor  𝑀13 is the determinant obtained by eliminating the 1st row and the 3rd 

column of matrix A, it means:  

𝑀13 = |
3 1
−2 −2

| = −4. 

Remark :  

A matrix has several minor determinants, as demonstrated in the following example. 

Definition :  

 We call   𝐶𝑖𝑗  the cofactor of the element 𝑎𝑖𝑗, given by the formula 

𝑪𝒊𝒋 = (−𝟏)
𝒊+𝒋.𝑴𝒊𝒋 

 

The determinant of A (at the i-th row) is calculated using cofactor expansion as 

follows: 

det(𝐴) = ∑𝑎𝑖𝑗 . 𝐶𝑖𝑗

𝑛

𝑗=1
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 Example  

Let  

𝐴 = (
4 1 2
3 1 4
−2 −2 0

), 

 

We expand along the first row: 

det(𝐴) = 4𝑀11 −𝑀12 + 2𝑀13 

With  
𝑀11 = 8        𝑀12 = 8     𝑒𝑡     𝑀13 = −4 

Therefore  

det(𝐴) = 4 × 8 − 8 + 2 × (−4) = 16 

 

Properties :  

Let  𝐴 𝑎𝑛𝑑  𝐵 be tow  matrices order 𝑛, satisfying: 

• det(𝐴. 𝐵) = det(𝐴) . det(𝐵) 

• det(𝐴𝑇) = det(𝐴) 

• det(𝑘. 𝐴) = 𝑘. det(𝐴) 

• The determinant of a triangular or diagonal matrix is equal to the product of its 

diagonal elements. 

• The determinant of a matrix containing a null row (or column) is 0. 

 

IV. invertible matrix 

Definition :   

Let  𝐴 be a square matrix of order 𝑛. The matrix 𝐴 is invertible if and only if there exists a 

square matrix 𝐵 of order 𝑛, such that 

𝐴 × 𝐵 = 𝐼𝑛 

And                                                                      𝐵 × 𝐴 = 𝐼𝑛 

With    𝐼𝑛 is the Identity matrix of order  𝑛.  

Additionally, the inverse of A is denoted by   𝐴−1 and  

 

𝐴−1 = 𝐵. 
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Remark : 

The concept of matrix inverses only applies to square matrices. This means that: 

𝐴 × 𝐴−1 = 𝐴−1 × 𝐴 = 𝐼𝑛 

Example 01 : Let  𝐴 be a square matrix of order 3 which satisfies the following relation 

𝐴3 = 3𝐴 − 2𝐼3 

 

Let's show that A is invertible. Indeed: 

𝐴3 = 3𝐴 − 2𝐼3 ⟺ 𝐴3 − 3𝐴 = −2𝐼3   

                                ⟺ −
1

2
(𝐴3 − 3𝐴) = 𝐼3 

 

                                ⟺ 𝐴 [−
1

2
(𝐴2 − 3𝐼3)] = 𝐼3 

Thus, we have 

[−
1

2
(𝐴2 − 3𝐼3)] 𝐴 = 𝐼3 

Therefore, A is invertible and its inverse is 

𝐴−1 = −
1

2
(𝐴2 − 3𝐼3) 

Example 02 :  

Let A and B be the two matrices such that: 

𝐴 =  (
1 2
3 4 

)       𝑎𝑛𝑑     𝐵 = (
−2 1
3

2
−
1

2
 
)       

Since,  

𝐴𝐵 = 𝐵𝐴 =  (
1 0
0 1 

)       

Then ,  , A is invertible, and   

𝐴−1 = 𝐵. 

 

How to calculate the inverse of an n-order matrix?  

It is recalled that the cofactor of the element 𝑎𝑖𝑗 is denoted by  𝐶𝑖𝑗 and defined by  

𝑪𝒊𝒋 = (−𝟏)
𝒊+𝒋.𝑴𝒊𝒋 

Where     𝑴𝒊𝒋  is the minor determinant of the matrix  𝐴 . 

Definition :( cofactor matrix ) :  

 

We call the cofactor matrix (or adjoint matrix) of A, the square matrix of order n, denoted as  
𝑐𝑜𝑓(𝐴) and defined by: 
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𝑐𝑜𝑓(𝐴) = (

𝐶11 𝐶12 … 𝐶1𝑛
𝐶21 𝐶22 … 𝐶2𝑛
⋮ ⋮ ⋱ ⋮
𝐶𝑛1 𝐶𝑛2 … 𝐶𝑛𝑛

) 

Proposition :  if  𝑑𝑒𝑡 (𝐴) ≠ 0, 𝑡ℎ𝑒𝑛  𝐴 𝑖𝑠  𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 . 

Définition :  

The inverse matrix  of A is also found using the following equation: 

 

𝐴−1 =
1

det(𝐴)
. 𝑐𝑜𝑓(𝐴)𝑡 
  

 Propriétés   

Let 𝐴, 𝐵 𝑎𝑛𝑑  𝐶 three invertible matrices of order n 

• if  𝐴 𝑖𝑠 invertible, then the matrix  𝐴−1 is unic. 

• 𝑑𝑒𝑡(𝐴−1) =
1

det (𝐴)
 

• (𝐴𝐵)−1 = 𝐵−1𝐴−1  

• (𝐴𝑡)−1 = (𝐴−1)𝑡 

Application : let the matrix A 

𝐴 = (
1 1 1
1 −1 1
4 2 1

) 

 

Show that A is invertible and calculate its inverse𝐴−1. 
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Chapter 03 :   

Linear Equations Systems 
 

 

A system of linear equations consists of several linear equations involving the same variables, 

which are called unknowns.  

A system of 𝑛 linear equations with 𝑝 unknowns: 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, is written in the 

following form: 

   (𝑆)   

{
 

 
𝑎11𝑥1 + 𝑎12. 𝑥2 + 𝑎13 +⋯+ 𝑎1𝑝𝑥𝑝 = 𝑏1
𝑎21𝑥1 + 𝑎22. 𝑥2 + 𝑎23 +⋯+ 𝑎2𝑝𝑥𝑝 = 𝑏2

⋮
𝑎31𝑥1 + 𝑎32. 𝑥2 + 𝑎33 +⋯+ 𝑎1𝑝𝑥𝑝 = 𝑏𝑛

 

Where :  

• The 𝑎𝑖𝑗 are given real numbers, referred to as the coefficients of the system. ( pour 1 ≤

𝑖 ≤ 𝑛    𝑎𝑛𝑑     1 ≤ 𝑗 ≤ 𝑝) 

• The   𝑏𝑖  are also real numbers representing the constants on the right-hand side of the 

system (S) (   𝑓𝑜𝑟  1 ≤ 𝑖 ≤ 𝑛  ). 

• The  𝑥𝑗 are the unknowns of the system, where 1 ≤ 𝑗 ≤ 𝑝. 

 

 

Solving the system (S) involves finding the values of  𝑥𝑗  that satisfy all the equations of the 

system. The system (S) can be rewritten in matrix form as: 

(

 
 

𝑎11 … 𝑎1𝑗 … 𝑎1𝑝
⋮ ⋱ ⋮ ⋮ ⋮
𝑎𝑖1 … 𝑎𝑖𝑗 … 𝑎𝑖𝑝
⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑛1 … 𝑎𝑛𝑗 … 𝑎𝑛𝑝)

 
 

⏟                  

                                         
   

𝐴                            ×    

.

(

 
 

𝑥1
:
𝑥𝑗
:
𝑥𝑝)

 
 

⏟  
    

            𝑋          

=

(

 
 

𝑏1
:
𝑏𝑖
:
𝑏𝑛)

 
 

⏟  
    

=         𝐵
        

 

 

In other words, (S) is equivalent to 

𝐴 . 𝑋 = 𝐵 

With 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑗 , … , 𝑥𝑝)  represents the unknown to be determined. 
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Remark :  

If all 𝑏𝑖 = 0  ( for 1 ≤ 𝑖 ≤ 𝑛 ), then the system is called homogeneous; otherwise (i.e., if at 

least one 𝑏𝑖 = 0 is not equal to zero), it is called non-homogeneous. 

 

I. Cramer’s system : 

Definition : 

 

A system (S) is said to be a Cramer's system if it satisfies these three conditions: 

• 𝐴 is a square matrix, meaning it contains the same number of equations as unknowns. 

In other words, the number of unknowns equals the number of equations. 

• 𝐴 is invertible, meaning 𝑑𝑒𝑡(𝐴) ≠ 0 

 

II. Methods of Solution : 

Cramer's systems of linear equations are solved using one of the following methods: 

• Method of matrix inversion (or Matrix inversion) 

• Cramer's method 

• Gauss method (Elimination Method) . 

For this purpose, consider the following system, which is non-homogeneous and 

Cramer's system written in its matrix form. 

 

(

 
 

𝑎11 … 𝑎1𝑗 … 𝑎1𝑝
⋮ ⋱ ⋮ ⋮ ⋮
𝑎𝑖1 … 𝑎𝑖𝑗 … 𝑎𝑖𝑝
⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑛1 … 𝑎𝑛𝑗 … 𝑎𝑛𝑝)

 
 

⏟                  

                                         
   

𝐴                            ×    

.

(

 
 

𝑥1
:
𝑥𝑗
:
𝑥𝑝)

 
 

⏟  
    

            𝑋          

=

(

 
 

𝑏1
:
𝑏𝑖
:
𝑏𝑛)

 
 

⏟  
    

=         𝐵
        

 

1) Method of matrix  inversion : 

It is evident that in Cramer's systems, the matrix 𝐴−1 exists (because 𝑑𝑒𝑡(𝐴) ≠ 0) . Therefore, 

to determine the vector 𝑋 it suffices to multiply both sides of the system by the inverse matrix 

𝐴−1. Indeed:  

𝐴.𝑿 = 𝐵    ⟺   𝐴−1. 𝐴. 𝑿 = 𝐴−1. 𝐵          

                                                                      ⟺   𝐼𝑛. 𝑿 = 𝐴
−1. 𝐵               (𝑏𝑒𝑐𝑎𝑢𝑠𝑒     𝐴−1. 𝐴 = 𝐼𝑛  )   

                                                                     ⟺   𝑿 = 𝐴−1. 𝐵                        (𝑏𝑒𝑐𝑎𝑢𝑠𝑒     𝐼𝑛. 𝑋 = 𝑋  )   
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This means that the values of the unknown vector �X are calculated from the matrix 

product 𝐴−1.𝐵. 

Example :  

Let the system  (𝑆1) :  

  (𝑠1)    {

3𝑥1 + 2𝑥2 + 𝑥3 = 4
𝑥1 + 𝑥2 + 𝑥3 = 1
𝑥1 − 2𝑥3 = −1

 

 

To solve(𝑆1) , we first need to write (𝑆1) in matrix form: 

(
3 2 1
1 1 1
1 0 −2

) . (

𝑥1
𝑥2
𝑥3
) = (

4
1
−1
)  

 

It is in the form: 

𝐴. 𝑋 = 𝐵  

With   

𝐴 = (
3 2 1
1 1 1
1 0 −2

)     ,   𝑋 = (

𝑥1
𝑥2
𝑥3
)        𝑎𝑛𝑑          𝐵 = (

4
1
−1
)  

 

Consequently, the solution 𝑋 of (𝑆1) is given by:  

𝑋 = 𝐴−1.𝐵. 

 

Now, let us calculate 𝐴−1, the inverse of 𝐴 , using the formula:  

𝐴−1 =
1

det(𝐴)
. 𝑐𝑜𝑚(𝐴)𝑡 
  

We have  

𝑑𝑒𝑡(𝐴) = −1 

 

Furthermore, after calculation, the matrix of cofactors of A is given by: 

𝐶𝑜𝑚(𝐴) = (
−2 3 −1
4 −7 2
1 −2 1

) 

It follows that: 

𝐴−1 =
1

−1 
(
−2 4 1
3 −7 −2
−1 2 1

) 
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It is deduced that:  

𝑋 = 𝐴−1.𝐵 = (
2 −4 −1
−3 7 2
1 −2 −1

) .(
4
1
−1
)    ⟹       𝑋 = (

5
−7
3
) 

 

 

2) Cramer Method’s :  

It is also called the method of determinants. Indeed, 

Let (S) be the matrix system to solve.  

𝐴. 𝑋 = 𝐵  

And let Δ denote the determinant of the matrix A, such that: 

  ∆ = det(𝐴) 

Thus, Δi is the determinant of the matrix obtained by replacing the i-th column of matrix A 

with the vector B (column of constants). 

Therefore, the unknown 𝒙𝒊 is obtained by calculating the following ratio: 

𝒙𝒊 =
∆𝑖  
∆
          𝑝𝑜𝑢𝑟 1 ≤ 𝑖 ≤ 𝑛 

Example (Application) :  

Let the system :  

𝐴. 𝑋 = 𝐵  

Where   

𝐴 =  (
3 2 1
1 1 1
1 0 −2

)     ,   𝑋 = (
𝑥
𝑦
𝑧
)         𝑎𝑛𝑑        𝐵 = (

4
1
−1
)  

The determinant of this systeme is : 

∆ = |𝐴| = −1 

 

 

Let's calculate the value of 𝑥, indeed: 

∆𝑥  = |
𝟒 2 1
1 1 1
−1 0 −2

| =  −5 

So,  

𝒙 =
∆𝑥  
∆
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⟹ 𝒙 =
−5

−𝟏
    

 ⟹     𝒙 = 𝟓            

 

• Let's calculate the value of 𝑦: 

∆𝑦  = |
3 4 1
1 1 1
1 −1 −2

| =   7 

Then  

𝒚 =
∆𝑦  

∆
=
𝟕

−𝟏
 

⟹ 𝒚 = −𝟕 

• Similarly, to find z, we have 

∆𝑧  = |
3 2 4
1 1 1
1 0 −1

| =  −3  

Then,  

𝒛 =
∆𝑧  
∆
= −

𝟑

−𝟏
 

⟹ 𝒚 = 𝟑 

So, the solution of(𝑆1)𝑒𝑠𝑡 ∶ 

𝑋 = (𝑥, 𝑦, 𝑧, ) = (5,−7,3). 

 

3) Gauss Method’s:  

 

Given the following matrix system: 

𝐴. 𝑋 = 𝐵                 (𝑆) 

 

To solve (S) using the Gauss method involves transforming the system matrix (S) into 

an upper triangular matrix using elementary row operations, and then solving the 

resulting system using the back-substitution method. 

To successfully achieve this transformation, we first need to define the Gauss table, 

written as follows: 

 

[𝐴   |   𝐵] 
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Definition : Elementary row operations on a matrix :  

The Elementary row operations (on the rows of a linear system) include the following: 

• Swapping two equations, which means interchanging two rows. 

• Multiplying a row by a constant. 

• Replacing an equation with a linear combination of two rows (or two equations). 

 

Definition : (pivot)  

 

A pivot is a value by which we must divide to solve the linear system. These are the diagonal 

elements of the square matrix (i.e., 𝑎11, 𝑎22, 𝑎33, … , 𝑎𝑛𝑛).  It is necessary for these pivots to be 

non-zero in order to determine the solution of the system. 

Note: This method is also called the Gauss elimination method, or the Gauss pivot method. 

 

Example (Application) :  

Let's solve the system using the Gauss method: 

𝐴. 𝑋 = 𝐵  

Where  

𝐴 =  (
3 2 1
1 1 1
1 0 −2

)     ,   𝑋 = (
𝑥
𝑦
𝑧
)         𝑒𝑡       𝐵 = (

4
1
−1
)  

 

The Gauss table is defined by: 

[ 

3 2 1
1 1 1
1 0 −2
   

     |

4
1
−1
 

 ]  

𝐿1
𝐿2 
𝐿3    

 

 

We denote 𝐿1, 𝐿2  𝑎𝑛𝑑  𝐿3 as the rows defined in the Gauss table.  

We also denote 𝐿′1, 𝐿2
′   𝑎𝑛𝑑  𝐿3

′  as the new rows calculated from  𝐿1, 𝐿2  𝑎𝑛𝑑  𝐿3.To 

transform the system into an upper triangular system, we first fix the first row 𝐿1and 

apply the following operations: 

𝐿2
′ = 𝐿1 + (−3)𝐿2 

And  

𝐿3
′ = 𝐿1 + (−3)𝐿3 

 

We obtain the new table: 
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[ 

3 2 1
0 −1 −2
0 2 −5
   

     |

4
−2
7
 

 ]   

𝐿1
𝐿′2 
𝐿′3    

 

 

To obtain the upper triangular matrix in the first part of the table, we use this operation while 

fixing the row 𝐿′2  

𝐿′′2 = (2)𝐿′2 + 𝐿′3  

This results in  

[ 

3 2 −1
0 −1 −2
0 0 −9 −
   

     |

4
1
9
 

 ]  

𝐿1
𝐿′2 
𝐿′3    

 

The new system obtained is: 

(

3 2 −1
0 −1 −4
0 0 −3
   

 ) . (
𝑥 
𝑦
𝑧
) = (

4
1
9
)  

 

The system is rewritten as linear equations, starting from the last row and moving upwards to the 

first. Indeed, 

{
−3𝑧 = 9

−𝑦 − 4𝑧 = 1
3𝑥 + 2𝑦 − 𝑧 = 4

 

 

By substitution, we find: 

{
𝑧 = −3
𝑦 = 11
𝑥 = −7

 

I. Non-cramerian systems : 

 

Let (𝑆)  be a linear system with 𝑛 equations and 𝑝 unknowns. (𝑆) is non-Cramerian if: 

1) 𝒏 > 𝒑 ,  , meaning there are more equations than unknowns. In this case, the system is 

termed “ overdetermined ”. 

 

2) 𝒏 < 𝒑 ,  , indicating fewer equations than unknowns. In this case, the system is termed 

“ underdetermined ” 

 

3) If 𝒏 = 𝒑   et   𝒅𝒆𝒕 (𝑨 ) =  𝟎, the system is square but non-invertible. 
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Solving overdetermined systems (𝒏 > 𝒑):  

 

It suffices to follow these steps  

a) Extract a subsystem with 𝑝 equations and 𝑝 unknowns such that the determinant 

associated with the subsystem is non-zero. 

b) Solve the subsystem. 

c) Check the solution obtained for the 𝑛 − 𝑝 equations. There are two cases: 

• If the solution satisfies all the equations, we conclude that the global system 

has a unique solution. 

• If the solution does not satisfy all the equations, then it is clear that the global 

system has no solution. 

Example: Consider the system: 

  (𝑠 )    {

𝑥 + 2𝑦 = 1
3𝑥 − 𝑦 = 2
5𝑥 − 4𝑦 = −2

 

The system(𝑠 ) contains 3 equations with 2 unknowns. Here, 𝑛 = 3 𝑎𝑛𝑑  𝑝 = 2 . To solve (S), 

we choose the subsystem (S’) with 2 equations: 

  (𝑠 ′)    {
𝑥 + 2𝑦 = 1
3𝑥 − 𝑦 = 2

  
 

 

The resolution of (S’)  is very simple and yields    𝑥 =
5

7
   𝑒𝑡 𝑦 =

1

7
.  In conclusion, we need to 

verify if this solution: 

𝑥 =
5

7
   𝑒𝑡 𝑦 =

1

7
 

satisfies the last equation (the one that was not chosen). 

5𝑥 − 4𝑦 = −2 

We have  

5𝑥 − 𝑦 = 5(
5

7
) − 4 (

1

7
) =

21

7
= 3 ≠ −2. 

 

We deduce that the solution obtained from the subsystem (S’)  does not satisfy all the 

equations. Consequently, the system (S) has no solutions. 
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Solving underdetermined systems  (𝒏 < 𝒑): 

To determine the solution of this type of system, we need to: 

1. Consider a subsystem that contains 𝒏 equations with 𝒏 unknowns and assume the 

remaining unknowns 𝒏 − 𝒑, as constants. 

2. The solution obtained demonstrates that underdetermined systems have infinitely 

many solutions. 

Example: Consider the system: 

 

  (𝑆 )    {
𝑥 + 2𝑦 − 𝑧 = 1
3𝑥 − 𝑦 + 𝑧 = 2

 

The system (𝑆 ) contains 2 equations with 3 unknowns:: 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 (here, 𝑛 = 2  𝑎𝑛𝑑  𝑝 = 3). 

To solve(𝑆 ), we choose the subsystem (𝑆′ ) with 2 equations and 2 unknowns while assuming 

the third unknown as a constant: 

Let's set: 

𝑧 = 𝛼     where     𝛼 ∈ ℝ 

The subsystem of (𝑆 ) is: 

{
𝑥 + 2𝑦 − 𝛼 = 1
3𝑥 − 𝑦 + 𝛼 = 2

       ⟹         {
𝑥 + 2𝑦 = 1 + 𝛼
3𝑥 − 𝑦 = 2 − 𝛼

  

Let's find the value of 𝑥 and 𝑦 in terms of 𝛼 which gives: 

𝑥 =
5 − 𝛼

7
          𝑎𝑛𝑑     𝑦 =

4𝛼 + 1

7
            𝑤ℎ𝑒𝑟𝑒  𝛼 ∈ ℝ  

Hence, (𝑆 ) has infinitely many solutions of the form:  

𝑋 = (𝑥; 𝑦; 𝑧) = ( 
5 − 𝛼

7
 ;      

4𝛼 + 1

7
;   𝛼)                           𝑎𝑣𝑒𝑐 𝛼 ∈ ℝ 
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