Continuous Mechanics Test

(Calculator allowed)

Exercise 1: (05 Pts)

A. The momentum $\mathrm{P}(\mathrm{P}=\mathrm{m} \vartheta$ where m is a mass and ϑ is a velocity) associated with a photon depends on its frequency f according to the following expression:

$$
P=\boldsymbol{\sigma}^{\alpha} \boldsymbol{f}^{\beta} \boldsymbol{c}^{\gamma}
$$

Where c is the speed of light and σ has the following dimension $[\sigma]=\mathrm{M} . \mathrm{L}^{2} . \mathrm{T}^{-1}$.
Using dimensional analysis, find the exponents α, β and γ.
B. The average velocity of the molecules of a gas is written in the following formula:

$$
\vartheta=\sqrt{\frac{P V}{m}}
$$

m being the mass of the molecule, V the volume, and p the pressure of the gas.
Calculate the relative uncertainty in ϑ as a function of $\Delta \mathbf{p}, \Delta \mathbf{m}$ and $\Delta \mathbf{V}$.

Exercise 2: (05 Pts)

A. $\vec{\imath}, \vec{\jmath}$ and \vec{k} being the unit vectors of an orthonormal reference frame (Oxyz), consider the vectors. $\quad \overrightarrow{r_{1}}=2 \vec{\imath}-2 \vec{\jmath}+3 \vec{k}, \overrightarrow{r_{2}}=\vec{\imath}+\vec{\jmath}+\vec{k}$

1- Calculate the vector product $\overrightarrow{r_{1}} \Lambda \overrightarrow{r_{2}}$.
2- Deduce the angle θ formed by the two vectors $\overrightarrow{r_{1}}$ and $\overrightarrow{r_{2}}$.
B. Let be a polar coordinate system with origin O and unit vectors $\overrightarrow{\mathbf{u}_{\boldsymbol{\rho}}}, \overrightarrow{\mathbf{u}_{\boldsymbol{\theta}}}$.

M is a point with coordinates $\left\{\begin{array}{c}\rho=2 t^{3}+1 \\ \theta=\omega t\end{array}\right.$ (ω constant).
1- Using a detailed diagram, give the expression of the position vector $\overrightarrow{\mathbf{0 M}}$ and calculate the velocity vector of point M in polar coordinates.
2- Write this velocity vector $\overrightarrow{\mathbf{v}}(\mathrm{M})$ in cartesian coordinates $(\mathbf{i}, \overrightarrow{\mathbf{J}}, \overrightarrow{\mathbf{k}})$.

Exercise 3: (05 Pts)

A particle moves along a trajectory whose equation is $x^{2}+y^{2}=\mathbf{4}$ such that $x(t)=\mathbf{2} \sin (\omega t)$.
Knowing that ω is constant and at $t=0$, the mobile is at point $M(0, R)$, Determine:

1) The component $y(t)$.
2) Velocity and acceleration vector components and their moduli.
3) Tangential and normal accelerations.
4) The nature of the motion.

Correction of Continuous Mechanics Test

Exercise 1: (5 pts)

A- The momentum P is given by the following expression: 2.5 pts

$$
\begin{aligned}
& P=\sigma^{\alpha} f^{\beta} c^{\gamma}=M v \quad \text { so }[P]=M . L^{1} . T^{-1}(0.5 \mathrm{pts}) \\
& \text { We have }\left\{\begin{array}{c}
{[v]=[c]=L . T^{-1}} \\
{[f]=T^{-1}} \\
{[M]=M}
\end{array} \quad(0.75 \mathrm{pts}) \text { and }[\sigma]=\mathrm{M} . \mathrm{L}^{2} . \mathrm{T}^{-1}\right. \\
& \Rightarrow[P]=[\sigma]^{\alpha}[f]^{\beta}[c]^{\gamma}=\left(M \cdot L^{2} . T^{-1}\right)^{\alpha}\left(T^{-1}\right)^{\beta}\left(L . T^{-1}\right)^{\gamma}(0.25 \mathrm{pts}) \\
& \Rightarrow[P]=M^{1} L^{1} T^{-1}=M^{\alpha} L^{2 \alpha+\gamma} T^{-\alpha-\beta-\gamma}(0.25 \mathrm{pts}) \\
& \Rightarrow\left\{\begin{array} { c }
{ \alpha = 1 } \\
{ 2 \alpha + \gamma = 1 } \\
{ - (\alpha + \beta + \gamma) = - 1 }
\end{array} \Rightarrow \left\{\begin{array}{c}
\alpha=1 \\
\gamma=-1(0.75 \mathrm{pts}) \\
\beta=1
\end{array}\right.\right. \\
& \Rightarrow \boldsymbol{P}=\boldsymbol{\sigma} \cdot \boldsymbol{f} . \boldsymbol{c}^{-\mathbf{1}}
\end{aligned}
$$

B- Relative uncertainty about v. (2.5pts)

$$
\begin{aligned}
& \qquad \boldsymbol{\vartheta}=\sqrt{\frac{P V}{m}} \\
& \Rightarrow \boldsymbol{\vartheta}^{2}=\frac{P V}{m} \Longrightarrow \log \left(\boldsymbol{\vartheta}^{2}\right)=\log \frac{P V}{m}(0.5 \mathrm{pts}) \\
& \Rightarrow 2 \log \vartheta=\log P+\log V-\operatorname{logm}(0.5 \mathrm{pts}) \\
& \Rightarrow 2 \frac{\mathrm{~d} \vartheta}{\vartheta}=\frac{\mathrm{dP}}{\mathrm{P}}+\frac{\mathrm{d} V}{\mathrm{~V}}+\frac{\mathrm{dm}}{\mathrm{~m}}(0.5 \mathrm{pts}) \\
& \Rightarrow 2 \frac{\Delta \vartheta}{\vartheta}=\frac{\Delta \mathrm{P}}{\mathrm{P}}+\frac{\Delta V}{V}+\frac{\Delta \mathrm{m}}{\mathrm{~m}}(0.5 \mathrm{pts}) \\
& \Rightarrow \frac{\Delta \vartheta}{\vartheta}=\frac{1}{2}\left(\frac{\Delta \mathrm{P}}{\mathrm{P}}+\frac{\Delta V}{\mathrm{~V}}+\frac{\Delta \mathrm{m}}{\mathrm{~m}}\right)(0.5 \mathrm{pts})
\end{aligned}
$$

Exercise 2: (05 pts)
A- $\overrightarrow{r_{1}}=2 \vec{\imath}-2 \vec{\jmath}+3 \vec{k}, \quad \overrightarrow{r_{2}}=\vec{\imath}+\vec{\jmath}+\vec{k}$
1- Calculatation of vector product $\overrightarrow{r_{1}} \Lambda \overrightarrow{r_{2}}$.
$\overrightarrow{r_{1}} \Lambda \overrightarrow{r_{2}}=-5 \overrightarrow{\mathrm{i}}+\overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}} \quad(0.5 \mathrm{pts})$
$2-\left|\overrightarrow{r_{1}} \Lambda \overrightarrow{r_{2}}\right|=\left|\overrightarrow{r_{1}}\right| \cdot\left|\overrightarrow{r_{1}}\right| \cdot \sin \theta \rightarrow \sin \theta=\frac{\left|\overrightarrow{r_{1}} \Lambda \overrightarrow{r_{2}}\right|}{\left|\overrightarrow{r_{1}}\right| \cdot\left|\overrightarrow{r_{1}}\right|}=0.9 \Rightarrow \theta \sim 64^{\circ} \mathrm{C}(0.5 \mathrm{pts})$
B- A material point M is identified by its polar coordinates:
$\left\{\begin{array}{c}\rho=2 t^{3}+1 \\ \theta=\omega t\end{array}(\omega\right.$ constant $)$

1- A position vector of the point \mathbf{M} is $: \overrightarrow{O M}=\rho \cdot \overrightarrow{u_{\rho}}=\left(2 t^{3}+1\right) \overrightarrow{u_{\rho}}(01 \mathrm{pts})$

The velocity vector $\overrightarrow{\boldsymbol{v}}$ of point M in polar coordinates will be:

$$
\begin{aligned}
& \begin{array}{l}
\Rightarrow \vec{v}=\frac{\mathrm{d} \overrightarrow{\sigma_{0}}}{\mathrm{dt}}=\frac{\mathrm{d} \rho}{\mathrm{dt}} \overrightarrow{u_{\rho}}+\rho^{\prime} \frac{d \overrightarrow{u_{\rho}}}{d t}= \\
\\
\Rightarrow \vec{v}=6 t^{2} \overrightarrow{U_{\rho}}+\rho \frac{d \theta}{d t} \frac{d \overrightarrow{U_{\rho}}}{d \theta} \\
\Rightarrow \vec{v}=6 t^{2} \overrightarrow{U_{\rho}}+\left(2 t^{3}+1\right) \omega \overrightarrow{U_{\theta}}(01 \mathrm{pts})
\end{array}
\end{aligned}
$$

2- $\overrightarrow{\boldsymbol{v}}$ in cartesiennes coordonates.

We have;
$\left\{\begin{array}{c}\overrightarrow{u_{\rho}}=\cos \theta \vec{\imath}+\sin \theta \vec{\jmath} \\ \overrightarrow{u_{\theta}}=-\sin \theta \vec{\imath}+\cos \theta \vec{\jmath}\end{array}(0.5 \mathrm{pts})\right.$
$\Rightarrow \vec{v}=6 t^{2}(\cos \theta \vec{i}+\sin \theta \vec{j})+\left(2 t^{3}+1\right) \omega(-\sin \theta \vec{i}+\cos \theta \vec{j})$
$\Rightarrow \vec{v}=\left(6 t^{2} \cos \theta-\left(2 t^{3}+1\right) \omega \sin \theta\right) \vec{i}+\left(6 t^{2} \operatorname{sins} \theta+\left(2 t^{3}+1\right) \omega \cos \theta\right) \vec{j}(01 \mathrm{pts})$
Exercise 3 : (05 pts)
We have $x^{2}+y^{2}=4$ such that $x(t)=2 \sin (\omega t)$.
1- $Y(t)=$? :
$x^{2}+y^{2}=4$ is an equation of the circular trajectory with radius $R=2$. So we have circular motion. So; $\boldsymbol{y}(\boldsymbol{t})=2 \boldsymbol{\operatorname { c o s }}(\boldsymbol{\omega} \boldsymbol{t})$
$2^{\text {nd }}$ method: we have $\boldsymbol{x}(\boldsymbol{t})=2 \boldsymbol{\operatorname { s i n }}(\boldsymbol{\omega} \boldsymbol{t})$ and $\mathrm{x}^{2}+\mathrm{y}^{2}=4$
so $y^{2}=4-x^{2}=4-4 \sin ^{2}(\omega t)=4\left(1-\sin ^{2}(\omega t)\right.$ Then: $\boldsymbol{y}(\boldsymbol{t})=2 \boldsymbol{\operatorname { c o s }}(\omega t)(0.5 \mathrm{pts})$

2- The velocity and the acceleration:

$$
\left\{\begin{array} { l }
{ v _ { x } = \frac { d x } { d t } } \\
{ v _ { y } = \frac { d y } { d t } }
\end{array} \Rightarrow \left\{\begin{array}{c}
v_{x}=2 \omega \cos (\omega t) \\
v_{y}=-2 \omega \sin (\omega t)
\end{array}(01 \mathrm{pts}) \text { so } \quad v=\sqrt{v_{x}^{2}+v_{y}^{2}}=2 \omega(0.5 \mathrm{pts})\right.\right.
$$

And $\left\{\begin{array}{l}a_{x}=\frac{d v_{x}}{d t} \\ a_{y}=\frac{d v_{y}}{d t}\end{array} \Rightarrow\left\{\begin{array}{l}a_{x}=-2 \omega^{2} \sin (\omega t) \\ a_{y}=-2 \omega^{2} \cos (\omega t)\end{array}\right.\right.$ (01 pts)

So $a=\sqrt{a_{x}^{2}+a_{y}^{2}}=2 \omega^{2} \quad(0.5 \mathrm{pts})$

3- Calculation of a_{T}, a_{N} :

$$
\begin{equation*}
a_{T}=\frac{d v}{d t}=0(0.5 \mathrm{pts}) \text { and } \quad a^{2}=a_{T}^{2}+a_{N}^{2} \Rightarrow a_{N}=a=2 \omega^{2} \tag{0.5pts}
\end{equation*}
$$

4- The nature of the motion:
We have : $\vec{a} \cdot \vec{v}=v_{x} \cdot a_{x}+v_{y} \cdot a_{y}=0$
So we have a uniform circular motion ($\omega=$ cst $) \quad(0.5 \mathrm{pts})$

