University of Tlemcen Faculty of Science Thursday: 07/12/2023 Duration: 01 h 30mn

Continuous Mechanics Test

(Calculator allowed)

Exercise 1: (05 Pts)

A. The momentum P (P=m ϑ where m is a mass and ϑ is a velocity) associated with a photon depends on its frequency f according to the following expression:

$$P = \sigma^{\alpha} f^{\beta} c^{\gamma}$$

Where c is the speed of light and σ has the following dimension $[\sigma] = M.L^2.T^{-1}$.

Using dimensional analysis, find the exponents α , β and γ .

B. The average velocity of the molecules of a gas is written in the following formula:

$$\vartheta = \sqrt{\frac{PV}{m}}$$

m being the mass of the molecule, V the volume, and p the pressure of the gas. Calculate the relative uncertainty in ϑ as a function of Δp , Δm and ΔV .

Exercise 2: (05 Pts)

A. \vec{i} , \vec{j} and \vec{k} being the unit vectors of an orthonormal reference frame (Oxyz), consider the vectors. $\vec{r_1} = 2\vec{i} - 2\vec{j} + 3\vec{k}$, $\vec{r_2} = \vec{i} + \vec{j} + \vec{k}$

- 1- Calculate the vector product $\overrightarrow{r_1} \wedge \overrightarrow{r_2}$.
- 2- Deduce the angle θ formed by the two vectors $\vec{r_1}$ and $\vec{r_2}$.

B. Let be a polar coordinate system with origin O and unit vectors $\overrightarrow{u_{\rho}}, \overrightarrow{u_{\theta}}$.

M is a point with coordinates $\begin{cases} \rho = 2t^3 + 1\\ \theta = \omega t \end{cases} (\omega \text{ constant}).$

1- Using a detailed diagram, give the expression of the position vector \overrightarrow{OM} and calculate the velocity vector of point M in polar coordinates.

2- Write this velocity vector $\vec{\mathbf{v}}$ (M) in cartesian coordinates $(\vec{\mathbf{i}}, \vec{\mathbf{j}}, \vec{\mathbf{k}})$.

Exercise 3: (05 Pts)

A particle moves along a trajectory whose equation is $x^2 + y^2 = 4$ such that $x(t) = 2 \sin(\omega t)$.

Knowing that ω is constant and at t=0, the mobile is at point M (0, R), Determine:

- 1) The component y(t).
- 2) Velocity and acceleration vector components and their moduli.
- 3) Tangential and normal accelerations.
- 4) The nature of the motion.

Correction of Continuous Mechanics Test

Exercise 1: (5 pts)

A- The momentum P is given by the following expression: 2.5 pts

$$P = \sigma^{\alpha} f^{\beta} c^{\gamma} = Mv \quad \text{so} [P] = M. L^{1}. T^{-1}(0.5 \text{ pts})$$
We have
$$\begin{cases} [v] = [c] = L. T^{-1} \\ [f] = T^{-1} \\ [M] = M \end{cases} (0.75 \text{ pts}) \text{ and } [\sigma] = M. L^{2}. T^{-1} \\ [M] = M \end{cases}$$

$$\Rightarrow [P] = [\sigma]^{\alpha} [f]^{\beta} [c]^{\gamma} = (M. L^{2}. T^{-1})^{\alpha} (T^{-1})^{\beta} (L . T^{-1})^{\gamma} (0.25 \text{ pts})$$

$$\Rightarrow [P] = M^{1} L^{1} T^{-1} = M^{\alpha} L^{2\alpha + \gamma} T^{-\alpha - \beta - \gamma} (0.25 \text{ pts})$$

$$\Rightarrow \begin{cases} \alpha = 1 \\ 2\alpha + \gamma = 1 \\ -(\alpha + \beta + \gamma) = -1 \end{cases} \Rightarrow \begin{cases} \alpha = 1 \\ \gamma = -1 \\ \beta = 1 \end{cases} (0.75 \text{ pts})$$

$$\Rightarrow P = \sigma. f. c^{-1}$$

B- Relative uncertainty about v. (2.5pts)

$$\vartheta = \sqrt{\frac{PV}{m}}$$
$$\Rightarrow \vartheta^2 = \frac{PV}{m} \Rightarrow \log(\vartheta^2) = \log\frac{PV}{m} (0.5 \text{ pts})$$
$$\Rightarrow 2\log\vartheta = \log P + \log V - \log m (0.5 \text{ pts})$$
$$\Rightarrow 2\frac{d\vartheta}{\vartheta} = \frac{dP}{P} + \frac{dV}{V} + \frac{dm}{m} (0.5 \text{ pts})$$
$$\Rightarrow 2\frac{\Delta\vartheta}{\vartheta} = \frac{\Delta P}{P} + \frac{\Delta V}{V} + \frac{\Delta m}{m} (0.5 \text{ pts})$$
$$\Rightarrow \frac{\Delta\vartheta}{\vartheta} = \frac{1}{2} \left(\frac{\Delta P}{P} + \frac{\Delta V}{V} + \frac{\Delta m}{m}\right) (0.5 \text{ pts})$$

Exercise 2: (05 pts)
A-
$$\vec{r_1} = 2 \vec{i} - 2\vec{j} + 3\vec{k}$$
, $\vec{r_2} = \vec{i} + \vec{j} + \vec{k}$
1- Calculatation of vector product $\vec{r_1} \wedge \vec{r_2}$.
 $\vec{r_1} \wedge \vec{r_2} = -5\vec{i} + \vec{j} + 4\vec{k}$ (0.5 pts)
2- $|\vec{r_1} \wedge \vec{r_2}| = |\vec{r_1}| . |\vec{r_1}| . sin\theta \rightarrow sin\theta = \frac{|\vec{r_1} \wedge \vec{r_2}|}{|\vec{r_1}| . |\vec{r_1}|} = 0.9 \implies \theta \sim 64^{\circ}\text{C}$ (0.5 pts)

B- A material point M is identified by its polar coordinates:

$$\begin{cases} \rho = 2t^3 + 1\\ \theta = \omega t \end{cases} (\omega \text{ constant})$$

1- A position vector of the point M is : $\overrightarrow{OM} = \rho \cdot \overrightarrow{u_{\rho}} = (2t^3 + 1)\overrightarrow{u_{\rho}}$ (01 pts)

The velocity vector \vec{v} of point M in polar coordinates will be:

$$\Rightarrow \vec{v} = \frac{d\overline{\partial M}}{dt} = \frac{d\rho}{dt} \overrightarrow{u_{\rho}} + \rho' \frac{d\overline{u_{\rho}}}{dt} =$$
$$\Rightarrow \vec{v} = 6t^2 \overrightarrow{U_{\rho}} + \rho \frac{d\theta}{dt} \frac{d\overline{U_{\rho}}}{d\theta}$$
$$\Rightarrow \vec{v} = 6t^2 \overrightarrow{U_{\rho}} + (2t^3 + 1)\omega \overrightarrow{U_{\theta}} (01 \text{ pts})$$

2- \vec{v} in cartesiennes coordonates.

We have;

 $\begin{cases} \overrightarrow{u_{\rho}} = \cos\theta \vec{i} + \sin\theta \vec{j} \\ \overrightarrow{u_{\theta}} = -\sin\theta \vec{i} + \cos\theta \vec{j} \end{cases} (0.5 \text{ pts}) \\ \Rightarrow \vec{v} = 6t^2(\cos\theta \vec{i} + \sin\theta \vec{j}) + (2t^3 + 1)\omega(-\sin\theta \vec{i} + \cos\theta \vec{j}) \\ \Rightarrow \vec{v} = (6t^2\cos\theta - (2t^3 + 1)\omega\sin\theta)\vec{i} + (6t^2\sin\theta + (2t^3 + 1)\omega\cos\theta)\vec{j} (01 \text{ pts}) \end{cases}$

Exercise 3 : (05 pts) We have $\mathbf{x}^2 + \mathbf{y}^2 = 4$ such that $x(t) = 2 \sin(\omega t)$.

1- Y(t)=?:

 $x^{2} + y^{2}=4$ is an equation of the circular trajectory with radius R=2. So we have circular motion. So; $y(t) = 2 \cos(\omega t)$

2nd method: we have $x(t) = 2 \sin(\omega t)$ and $x^2 + y^2 = 4$ so $y^2 = 4 - x^2 = 4 - 4 \sin^2(\omega t) = 4(1 - \sin^2(\omega t))$ Then: $y(t) = 2 \cos(\omega t)$ (0.5 pts)

2- The velocity and the acceleration:

$$\begin{cases} v_x = \frac{dx}{dt} \\ v_y = \frac{dy}{dt} \end{cases} \Rightarrow \begin{cases} v_x = 2\omega \cos(\omega t) \\ v_y = -2\omega \sin(\omega t) \end{cases} (01 \text{ pts}) \text{ so } v = \sqrt{v_x^2 + v_y^2} = 2\omega (0.5 \text{ pts}) \end{cases}$$

$$\text{And} \begin{cases} a_x = \frac{dv_x}{dt} \\ a_y = \frac{dv_y}{dt} \end{cases} \Rightarrow \begin{cases} a_x = -2\omega^2 \sin(\omega t) \\ a_y = -2\omega^2 \cos(\omega t) \end{cases} (01 \text{ pts}) \end{cases}$$

So $a = \sqrt{a_x^2 + a_y^2} = 2\omega^2$ (0.5 pts)

3- Calculation of a_T , a_N : $a_T = \frac{dv}{dt} = 0$ (0.5 pts) and $a^2 = a_T^2 + a_N^2 \Rightarrow a_N = a = 2\omega^2$ (0.5 pts)

4- The nature of the motion:

We have : \vec{a} . $\vec{v} = v_x$. $a_x + v_y$. $a_y = 0$

So we have a uniform circular motion (ω =cst) (0.5 pts)