

┥┟

 C_1

 C_4

C₂ ·

_ C³

Final Exam of Electricity

(Calculatrice autorisée)

Course questions: (6pts)

1- A metal sphere (S) of radius **R** and very thin thickness is initially isolated. A point charge +q is approached to a distance (2R) from the center of sphere **S**. A new state of equilibrium is established. Show that the sphere becomes negatively charged when (S) is connected to earth. Calculate this charge.

2- Consider a capacitor formed by two parallel planes (armatures) with the same surface area S, separated by a distance e. One carries a positive density charge $(+\sigma)$, while the other carries a negative density charge $(-\sigma)$. Knowing that the electric field created by a plane charged on the surface by a surface density σ , is given by $\mathbf{E}=\sigma/2\varepsilon_0$.

- Give the expression for the electric field between the two armatures.
- Deduce the expression for its capacitance

3- What does the current density **J** represent, and what is its relationship to the dielectric conductivity σ and the electric field **E**?

4- Write the form of the elementary electric field \overrightarrow{dE} in the case of a linear charge distribution.

Exercise 1: (06 pts)

Consider the capacitor array shown in the following figure:

1- Determine the equivalent capacitance of the circuit.

2- Calculate the electrical charge carried by each capacitor.

3- Calculate the voltage across the armatures of each capacitor ^E of the circuit.

4- Calculate the energy stored by capacitor C₁.

We give : $C_1 = 2 \ \mu F$; $C_2 = 4 \ \mu F$; $C_3 = 10 \ \mu F$; $C_4 = 7 \ \mu F$ and E = 12V

Exercise 2: (08 pts)

Consider the following circuit.

1- Calculate the value of the current I using Kirchhoff's two laws.

2- Find the value of I, using the equivalent resistance Req of the circuit.

3- Find the currents flowing through resistors R_3 and R_4 .

4- Calculate the total power P_T dissipated by equivalent circuit resistance, and calculate the power P supplied by source E. Conclude.

We give : $R_1=2\Omega$, $R_2=20\Omega$, $R_3=12\Omega$, $R_4=6\Omega$, $R_5=16\Omega$ and E=24 V

