Corrected final exam electricity

Course questions: (6pts)

1. A metal sphere (S) of radius R , initially insulated ($\Delta \mathrm{Q}=0$). (1.5pts)
(S)

- When (S) is approached with a +q charge, this positive charge attracts the negative charges of the S sphere and repels the positive charges.
The total potential will be : $V^{\prime}=V_{i}+V_{f}=K \frac{Q}{R}+K \frac{+q}{2 R}(0.5 \mathrm{pts})$
- When the potential is cancelled (grounding $\mathrm{V}=0$), the positive (+) charges of S are neutralized (they flow to ground) and the sphere becomes negatively charged. (0.5 pts).

Where : $\mathrm{V}^{\prime}=0(0.25 \mathrm{pts})$

$$
\begin{aligned}
\Rightarrow V^{\prime}=V_{i}+V_{f}=K \frac{Q}{R}+K \frac{+q}{2 R} & =0 \\
& \Rightarrow Q=-\frac{q}{2} \quad(0.25 \mathrm{pts})
\end{aligned}
$$

2. Definition of a capacitor Plane: This is an assembly of two surface-charged planes under total influence. (0.5 pts)

Capacitance of a Plan capacitor:

$$
\mathbf{C}=\frac{\mathbf{Q}}{\left(\mathbf{V}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}\right)}=\frac{\mathbf{Q}}{\mathbf{U}}(0.5 \mathrm{pts})
$$

The field created by a plane is given by this formula $\mathrm{E}=\frac{\sigma}{2 \varepsilon_{0}}$.

- The field created by two planes:

$$
\begin{gathered}
\vec{E}=\overrightarrow{E_{1}}+\overrightarrow{E_{2}}=+\frac{\sigma}{2 \varepsilon_{0}}(+\vec{k})+\frac{-\sigma}{2 \varepsilon_{0}}(-\vec{k})(0.25 \mathrm{pts}) \\
\vec{E}=\frac{\sigma}{\varepsilon_{0}} \vec{k} \text { Coulomb Theoreme }(0.25 \mathrm{pts})
\end{gathered}
$$

- Calculating the potential difference:

$$
\begin{gathered}
\left\{\begin{array}{c}
\vec{E}=-\overrightarrow{g r a d} V \\
E=E(z)
\end{array}(0.5 \mathrm{pts})\right. \\
E=-\frac{d V}{d z} \Rightarrow d V=-E d z(0.25 \mathrm{pts}) \\
V_{1}-V_{2}=\int E d z=\int_{0}^{e} \frac{\sigma}{\varepsilon_{0}} d z=\frac{\sigma}{\varepsilon_{0}}\left(z_{2}-z_{1}\right)=\frac{\sigma}{\varepsilon_{0}} e=\mathrm{U}(0.25 \mathrm{pts})
\end{gathered}
$$

- The capacitance of a spherical capacitor:

$$
\mathrm{C}=\frac{\mathrm{Q}}{\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)}=\frac{\sigma . \mathrm{S}}{\frac{\sigma}{\varepsilon_{0} e}} \text { so } \mathbf{C}=\frac{\varepsilon_{0} S}{\boldsymbol{e}}(0.5 \mathrm{pts})
$$

3. The current density $\vec{\jmath}$ rerepresents the amount of charge passing through the unit area per

$$
\text { unit time }(0.5 \mathrm{pts}) \cdot \vec{J}=\sigma \vec{E} \cdot(0.5 \mathrm{pts})
$$

4. The shape of the elementary electric field $\mathrm{d} \overrightarrow{\mathrm{E}}$ for a linear load distribution is :

$$
\mathrm{d} \vec{E}=\frac{k d q}{r^{2}} \vec{u}=k \frac{\lambda d l}{r^{2}} \vec{u}(0.5 \mathrm{pts})
$$

Exercise 1: (07 pts)

1- Equivalent capacity :
$C_{23}=C_{2}+C_{3}=10+4=14 \mu F(0.5 \mathrm{pts})$
$\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{23}}+\frac{1}{C_{4}}=\frac{1}{2}+\frac{1}{14}+\frac{1}{7}=\frac{10}{14} \Rightarrow C_{e q}=1,4 \mu F \quad(0.5 \mathrm{pts})$
2- Charges carried by capacitors :

In a series connection:

$\mathbf{Q}_{\mathrm{eq}}=\mathbf{Q}_{\mathbf{C} 1}=\mathbf{Q}_{\mathbf{C} 23}=\mathbf{Q}_{\mathbf{C} 4}(0.5 \mathrm{pts})$ with $\mathbf{Q}_{\mathrm{eq}}=\mathbf{C e q} \mathbf{E}$ et $\mathbf{E}=\mathbf{U}_{\mathbf{C} 1}+\mathbf{U}_{\mathbf{C} 23}+\mathbf{U}_{\mathbf{C} 4}(0.5 \mathrm{pts})$
$Q_{e q}=C_{e q} E \Rightarrow Q_{e q}=1,4 \times 12=16,8 \mu C(0.5 \mathrm{pts})$
$Q_{e q}=Q_{C_{1}}=Q_{C_{4}}=Q_{C_{23}}=16,8 \mu C$ (0.5pts)
And $\boldsymbol{U}_{\mathbf{2 3}}=\boldsymbol{U}_{\mathbf{2}}=\boldsymbol{U}_{\mathbf{3}}(0.5 \mathrm{pts}) \Rightarrow \frac{Q C_{23}}{C_{23}}=\frac{Q_{C_{2}}}{C_{2}}=\frac{Q C_{3}}{C_{3}}$
$\Rightarrow Q_{C_{2}}=\frac{Q_{C_{23}} \times C_{2}}{C_{23}}=\frac{16,8 \times 4}{14}=4.8 \mu C(0.5 \mathrm{pts})$ and $Q_{C_{3}}=\frac{Q_{C_{23}} \times C_{3}}{C_{23}}=\frac{16,8 \times 10}{14}=12 \mu C(0.5 \mathrm{pts})$
3- the ddp of capacitors

$$
U_{1}=\frac{Q C_{1}}{C_{1}}=\frac{16,8}{2}=8,4 \mathrm{Volt} \quad(0.5 \mathrm{pts}) \text { and } U_{4}=\frac{Q_{C_{4}}}{C_{4}}=\frac{16,8}{7}=2,4 \mathrm{Volt}(0.5 \mathrm{pts})
$$

And $U_{3}=U_{2}=12-8,4-2,4=1,2$ Volt (0.5 pts)
4. The energy carried by C_{1} is:

$$
E_{p}=\frac{1}{2} C U^{2}=\frac{1}{2} \cdot Q U(0.5 \mathrm{pts}) \text { so } \mathrm{E}_{\mathrm{p}}=1810^{-9} J \text { (0.5pts) }
$$

1- Current intensity I using Kirchoff's laws :
with: $\mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=20 \Omega, \mathrm{R}_{3}=12 \Omega, \mathrm{R}_{4}=6 \Omega, \mathrm{R}_{5}=16 \Omega$ and $\mathrm{E}=24 \mathrm{~V}$ Nods law: $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}(0.5$ pts $)$

Lope law:
$\mathrm{E}-\mathrm{R}_{1} \mathrm{I}-\mathrm{R}_{2} \mathrm{I}_{1}=0$ (0.5 pts)
$\mathrm{R}_{2} \mathrm{I}_{1}-\mathrm{R}_{34} \mathrm{I}_{2}-\mathrm{R}_{5} \mathrm{I}_{2}=0$ (0.5 pts)

$\frac{1}{R_{34}}=\frac{1}{R_{3}}+\frac{1}{R_{4}}=\frac{1}{6}+\frac{1}{12}=\frac{3}{12} \Rightarrow R_{34}=4 \Omega(0.5 \mathrm{pts})$

$$
\left\{\begin{array} { c }
{ 2 4 - 2 (I _ { 1 } + I _ { 2 }) - 2 0 I _ { 1 } = 0 } \\
{ 2 0 I _ { 1 } - 1 6 I _ { 2 } - 4 I _ { 2 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{c}
12-2 I_{2}-22 I_{1}=0 \\
20 I_{1}-20 I_{2}=0
\end{array}\right.\right.
$$

$\mathrm{I}_{2}=\mathrm{I}_{1}$ so $24-24 \mathrm{I}_{2}=0$ then $\mathrm{I}_{2}=\mathrm{I}_{1}=1 \mathrm{~A} \quad(0.5 \mathrm{pts})$ and $\mathrm{I}=2 \mathrm{~A}(0.5 \mathrm{pts})$
2- The current I using the equivalent resistance:
$\mathrm{R}_{345}=16+4=20 \Omega(0.25 \mathrm{pts})$,
$\frac{1}{R_{2345}}=\frac{1}{R_{2}}+\frac{1}{R_{345}}(0.25 \mathrm{pts})=\frac{1}{20}+\frac{1}{20}=\frac{2}{20} \Rightarrow R_{2345}=10 \Omega$ (0.25 pts$)$
$\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2345}(0.25 \mathrm{pts})=2+10=12 \Omega$ with $\mathrm{E}-\mathrm{R}_{\mathrm{eq}} \mathrm{I}_{1}=0(0.5 \mathrm{pts})$
so $I_{1}=\frac{E}{R_{e q}}=\frac{24}{12}=2 A(0.5 \mathrm{pts})$
3- Circulating currents in resistors R_{3} and R_{4} :
$\mathrm{U}_{34}=\mathrm{R}_{34} \mathrm{I}_{2}=4 \mathrm{x} 1=4 \mathrm{~V}$ (0.25 pts) with $U_{34}=U_{3}=U_{4} \Rightarrow U_{34}=R_{3} I_{2}^{\prime}=R_{4} I_{2}^{\prime \prime}$ (0.25 pts)
So $I_{2}^{\prime}=\frac{U_{34}}{R_{3}}=\frac{4}{12}=\frac{1}{3} A(0.25 \mathrm{pts})$ and $I_{2}^{\prime \prime}=\frac{U_{34}}{R_{4}}=\frac{4}{6}=\frac{2}{3} A(0.25 \mathrm{pts})$
4- we have $\mathrm{P}_{\mathrm{T}}=\mathrm{U}^{*} \mathrm{I}=$ Req. $\mathrm{I}^{2}=12 * 4=48 \mathrm{~W}$ (0.5 pts)
In the other hand: $\mathrm{P}=\mathrm{EI}=24 \mathrm{~V} \times 2 \mathrm{~A}=48 \mathrm{~W}$ (0.5 pts)
Conclusion: $\mathrm{P}_{T}=\mathrm{P}$ (0.5pts)

