$$
\text { Séries } \mathrm{N}^{\circ} 1
$$

Exercise 1

1. Specify whether the following products are an element, compound, heterogenous mixture, or homogenous mixture.

1- Air,
2- The Ground,
3- Azote $\left(\mathrm{N}_{2}\right)$,
4- Sulfuric Acid ($\mathrm{H}_{2} \mathrm{SO}_{4}$),
5- Tap Water,

6- Parfum, 7-Fruit Yogurt, 8- Gasoline / Car Oil, 9- Concrete, 10- White Sugar,
2. For each of the following statements, indicate whether it is a physical or chemical phenomenon (transformation) :

1- The melting of ice
2- Dissolution of table salt in water
3-Toast a slice of bread
4-Cutting a sheet of cardboard.
5- Melt chocolate

6-The bleaching of a pair of jeans by bleach
7- Sugar caramelization

Exercise 2

Concider the following table :

Matter	Melting Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Boiling point $\left({ }^{\circ} \mathrm{C}\right)$
water $: \mathrm{H}_{2} \mathrm{O}$	0	100
Sodium chloride: NaCl	+801	+1465
Butane $: \mathrm{C}_{4} \mathrm{H}_{10}$	-138	-1

1. In what state is :
a) water at $\left(-30^{\circ} \mathrm{C}\right)$ and at $\left(+120^{\circ} \mathrm{C}\right)$
b) sodium chloride at $\left(1600^{\circ} \mathrm{C}\right)$ and at $\left(25^{\circ} \mathrm{C}\right)$
c) butane at $\left(-134^{\circ} \mathrm{C}\right)$
2. Calculate the molar mass of each matter .

Data: H $1 \mathrm{~g} / \mathrm{mol} ; \mathbf{O} 16 \mathrm{~g} / \mathrm{mol}$; Na $23 \mathrm{~g} / \mathrm{mol} ; \mathbf{C l} 35,5 \mathrm{~g} / \mathrm{mol} ; \mathbf{C} 12 \mathrm{~g} / \mathrm{mol}$;

Exercise 3

1. How many moles are there in: 4 g of $\mathrm{NaOH} ; 30 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{~d}=1,83) ; 100 \mu \mathrm{~g}$ of $\mathrm{KMnO}_{4} ; 2,75$ 10^{32} atoms of iron (Fe).
2. Which sample is the most iron-rich: 2 g of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and $5,30 \times 10^{21}$ atoms of iron.
3. Which sample contains the least moles of atoms : [25 g of carbone or $2,4910^{22}$ atoms of $\mathrm{Au}(\mathrm{or})$]
4. Calculate in \mathbf{g} and in $\mathbf{K g}$ the corresponding mass at 1 u.m.a.

Data molair mass (g/mol): C (12) ; $\mathrm{Na}(23) ; \mathrm{O}(16) ; \mathrm{S}(32) ; \mathrm{K}(39) ; \mathrm{Mn}(55) ; \mathrm{Fe}(56) ; \mathrm{Cl}(35,5)$

Exercise 4

For 1 mL of water calculate
a- The corresponding mass of water
b- The number of moles of oxygène
c- The number of moles of hydrogene atoms d- The number of moles of molecule of water
e- The number of moles of water
f - The number of hydrogen atoms
g- The number of oxygen atoms

Data : $\rho\left(\mathrm{H}_{2} \mathrm{O}\right)=1 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=18 \mathrm{~g} / \mathrm{mol}$; le nombre d'Avogadro $=6.02310^{23} \mathrm{~mole}^{-1}$.

Exercise 5

a-Calculate the molarity of solution A preparated by dissolving $4,2 \mathrm{~g}$ of NaOH in distilled water to obtain 350 ml of this solution.
b-what is the volume of distilled water added to the solution A to obtain solution B at $0,25 \mathrm{M}$.

Exercise 6

Solution of nitric acid :

On a commercial solution flask of nitric acid HNO_{3}, we find: mass percentage : 68,0 \% ; Density : $\mathrm{d}=1,41$; Molar mass : $\mathrm{M}=63,0 \mathrm{~g} . \mathrm{mol}^{-1}$.

1. demonstrate that the molar concentration of nitric acid in this commercial solution is $15 \mathrm{~mol} \mathrm{~L}^{-1}$.
2. determine the volume $\mathrm{V}_{0}(\mathrm{~mL})$ of commercial solution that needs to be taken to prepare $\mathrm{V}=500 \mathrm{~mL}$ of nitric acid solution of concentration $\mathrm{C}=1,0 \mathrm{~mol} . \mathrm{L}^{-1}$.
3. Name this process

Exercise 7

bleach :

Bleach is an aqueous solution containing Na^{+}and hypochlorite ClO^{-}ions. The molar masse of ClO^{-}ions is $\mathrm{M}=51,5 \mathrm{~g} / \mathrm{mol}$. The molar concentration of hypochlorite ion in bleach $=0,75 \mathrm{~mol} / \mathrm{L}$
1.what chemical species makes up the solvent?
2. what chemical species makes up the solute?
3. Calculate the mass of ClO^{-}ions in one liter of bleach
4. Deduce the massic concentration of ClO^{-}ions in bleach.

From this bleach we want to prepare 100 mL of subsolution S^{\prime} twice less concentrated.
a. what will be the concentration of S^{\prime} ?
b. Calculate the volume of soluion S that needs to be taken to prepare solution S '

Exercise 8

We have a solution of acetic acid with a density aqual to 1.14 and purity equal to 99.8%
a- What volume does 100 g of this acid ocupy?
b- What is the solution's molarity?
Data: $\mathrm{M}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=60 \mathrm{~g} / \mathrm{mol}$

