The tutorial answers

Dr BENOMARA Amina married name BENDIMERAD

Assistant Professor at the University of TLEMCEN

Faculty of Technology

Mechanical Engineering Department Email:amina.benomara@univ-tlemcen.dz

March 2024

Table des matières

l - T	he tutorial answers	3
	1. Exercise 1	.3
	2. Exercise 2	.3
	3. Exercise 3	4

I The tutorial answers

1. Exercise 1

- 1. Water is in a liquid state at atmospheric pressure, and to change to a gaseous (or solid) state all you have to do is raise the temperature above 100°C (or lower it below 0°C).
- 2. One kilogram (1 kg) of pure water is placed in the freezer.

a-Volume of water:

$$V=rac{m}{
ho}{
ightarrow}V=rac{1}{10^{-3}}{
ightarrow}V=10^3 mL=1L$$

b- The water turns to ice and solidifies.

c-Following this transformation: Since the mass of the body does not change, therefore the volume varies inversely proportional to the density: $\rho_{\text{water}} > \rho_{\text{ice}}$ therefore $V_{\text{ice}} > V_{\text{eau}}$

2. Exercise 2

1. Before starting the exercise we need to know

$$n=rac{m}{M};N=n.N_A$$

With : n: number of moles; N: number of atoms and N_A avogadro's number

a- In: 6 *g de Fe* :

$$n_{Fe} = rac{6}{56} = 0{,}107\,mol\,{ o}0{,}107{\cdot}6{,}023{\cdot}10^{23} = 6{,}444.10^{22}\,atoms$$

b- In 6 *g de C*:

$$n_c = rac{6}{12} = 0.5\,mol
ightarrow 0.5 \cdot 6.023 \cdot 10^{23} = 3.011 \cdot 10^{23}\,atoms$$

c- In 6 *q de* **Ag**:

$$n_{Ag} = rac{6}{108} = 0.055\,mol
ightarrow 0.055 \cdot 6.023 \cdot 10^{23} = 3.312 \cdot 10^{22}\,atoms$$

2. The mass in grams of:

a-1.52 mol of Cu:
$$m_{Cu}$$
 = n_{Cu} - M_{Cu} = 1.52 - 63.5 = **96**, **52** g

b-1.52mol of Na:
$$m_{Na}$$
 = n_{Na} - M_{Na} = 1.52 - 23 = **34**, **96** g

c-1.52 mol Au:
$$m_{Au}$$
 = n_{Au} - M_{Au} = 1.52 - 197 = **299**, **44** g

3. In a sample of 1.59 g of copper oxide CuO:

We have
$$n_{Cu} = n_O = n_{CuO} = \frac{1,59}{63.5+16} = 0,02 \, mol$$

 $N = 0.02 - 6.023 \cdot 10^{23} = 1$, 204 · 10²² atoms of Cu and of O, and 1, 204 · 10²² molecules of CuO

1. Sample 1:

$$0.2 \, mol \, Fe_2 \, (SO_4)_3 N = 2.0.2 - 6.0^{23}.10^{23} = {f 2,409.10^{23}} \, atoms \, of \, Iron$$

2. Sample 2:

$$20g\,of\,iron\,n=rac{m}{M}=rac{20}{56}=0,\!357\,mol\,; N=0,\!357\cdot 6,\!023\cdot 10^{23}={f 2,\!151\cdot 10^{23}}\,atoms\,of\,iron$$

3. Sample **3**:

 $N={f 2,5-10^{23}}$ atoms of iron ightarrow it 's the sample 3 that contains the most iron atoms .

3. Exercise 3

A-For each of the following statements, the transformation is:

The melting of ice	Physical transformation
Dissolution of table salt in water	Physical transformation
Toast a slice of bread	Chemical transformation
Cutting a sheet of cardboard	physical transformation
Melt chocolate	physical transformation
The bleaching of a pair of jeans by bleach	Chemical transformation
Sugar caramelization	Chemical transformation

B-according to the table

- 1. At -30°C water is in a solid state and at 120°C water is in a state of vapour.
- 2. At 1600°C sodium chloride is in a gaseous state and at 25°C it is in a solid state.
- 3. Butane is a liquid at -134°C