The tutorial serie

Dr BENOMARA Amina married name BENDIMERAD

Assistant Professor at the University of TLEMCEN

Faculty of Technology

Mechanical Engineering Department Email:amina.benomara@univ-tlemcen.dz

March 2024

Table des matières

۱ -	The tutorial serie	3
	1. Exercise 1	3
	2. Exercise 2	3
	3. Exercise 3	3
	4. Exercise 4 :	3

I The tutorial serie

1. Exercise 1

1. Give, in table form, the mass, proton, neutron and electron numbers of the following nuclides and ions:

$${}^{40}_{19}K; {}^{3}_{1}H; {}^{16}_{8}O; {}^{58}_{26}Fe; {}^{24}_{12}Mg; {}^{76}_{34}Se; {}^{18}_{8}O^{-2}; {}^{25}_{12}Mg^{+2}; {}^{2}_{1}H; {}^{56}_{26}Fe^{+2}$$

2. List the different families of isotopes.

2. Exercise 2

Exercise 3

We assume that the mass of the phosphorus atom is equal to the sum of the masses of the particles that make it up.

- 1. What is the mass of the nucleus of a phosphorus atom?
- 2. What is the mass of the electron cloud of a phosphorus atom?
- 3. What is the mass of a phosphorus atom?

3. Exercise 3

The mass of all the electrons in the iron atom is 2,366.10⁻²⁹ kg.

- 1. Knowing that one electron has a mass of 9,1.10⁻³¹ kg, how many electrons does an iron atom have?
- 2. What is the number of positive charges carried by the nucleus of the iron atom?
- 3. Deduce the atomic number of the iron atom. The mass of an iron atom is $9,3.10^{-26}$ kg.
- 4. Calculate the number of iron atoms that make up an iron nail of 2,5 g.

4. Exercise 4:

Naturally occurring iron ${}_{26}Fe$ consists of four stable isotopes (N°1 to N°4) whose natural abundances are shown below:

Isotope	N°1	N°2	N°3	N°4
Atomic mass (u)	53,9399	55,9349	56,935	57,933
Abundance (%)	5,84	91,75	2,12	0,28

- 1. Give the composition of each of these isotopes.
- 2. Find the natural average mass of iron.
- 3. Calculate the mass defect in (u) of the nucleus:

The tutorial serie