The tutorial answers

Dr BENOMARA Amina married name BENDIMERAD

Assistant Professor at the University of TLEMCEN

Faculty of Technology

Mechanical Engineering Department Email:amina.benomara@univ-tlemcen.dz

March 2024

Table des matières

I - The tutorial answers	3
1. Exercise 1	3
2. Exercise 2	3
3. Exercise 3	4
4. Exercise 4	4

I The tutorial answers

1. Exercise 1

1. Constitution of atomic entities:

Symbol	Mass number	Protons	Neutrons	Electrons
K	40	19	21	19
Н	3	1	2	1
0	16	8	8	8
Fe	58	26	32	26
Mg	24	12	12	12
Se	76	34	42	34
O ² -	18	8	10	10
Mg ² +	25	12	13	10
Fe²+	56	26	30	24

2. The different isotope families are:

$$({}^{3}_{1}H, {}^{2}_{1}H), ({}^{16}_{8}O, {}^{18}_{8}O^{-2})({}^{58}_{26}Fe^{+2}\,, {}^{56}_{26}Fe^{+2})({}^{24}_{12}Mg\,, {}^{25}_{12}Mg^{+2})$$

2. Exercise 2

1. the nucleus mass of a phosphorus atom:

$$egin{aligned} m_{nucleus} &= Z.m_p + N.m_N = 15.m_P + 16.\,mN \ m_{nucleus} &= 15.(1,673.10^{-27}) + 16.(1,675.10^{-27}) \ m_{nucleus} &= 51,895.10^{-27}\,Kg \end{aligned}$$

2. The electron cloud massof a phosphorus atom:

$$m = \acute{e}.m_{\acute{e}} = 15.(9{,}109.10^{-27}) \ m_{electron} = 136{,}635.10^{-31}\,Kg$$

3. The mass of a phosphorus atom:

$$m_p = m_{nucleus} + m_{electroncloud} \ m_P = 51,\!895.10^{-27} + 136,\!635.10^{-31} \ m_P = 51,\!908^{-27}\,Kg$$

Conclusion

the mass of the atom is therfore substantially the same as the mass of its nucleus so the mass of the electron cloud is negligible

3. Exercise 3

1. Number of electron in the Iron atom

-the mass of all the electron is $2,366.10^{-29}$ kg and the mas of a single electron is $9.31.10^{-31}$ Kg so:

$$number\, of\, electon\, of\, the\, iron = rac{2,366,10^{-29}}{9.31,10^{-31}} = 26$$

Iron has 26 electrons

2. The number of positive charges carried by the nucleus of the iron atom:

Iron is a natural atom so its number of proton is equal to its number of electron, therefore iron has 26 positive charges.

3. The atomic number of the iron atom:

In an atom, the number of electrons is equal to the number of charges in the nucleus, so iron has 26 positive charges and its atomic number is Z=26.

4. The number of iron atoms in an iron nail of 2,5 g:

knowing that:

$$egin{aligned} 1 \ atom \ of \ iron \rightarrow & 9, 3.10^{23} g \ & 2, 5g \rightarrow X \ & X = 2, 69.10^{22} \ atoms \end{aligned}$$

So there are 2,69.10²² atoms in an iron nail of 2.5g.

4. Exercise 4

1. Isotopes composition:

Isotope	N°1	N°2	N°3	N°4
A	54	56	57	58
N	28	30	31	32

2. Natural average mass of Fe

$$A(Fe) = 0.0584.53,9399 + 0.9175.55,9349 + 0.0212.56,9350 + 0.0028.57,9330 \ A(Fe_{nat}) = 55,8396g.\,mol^{-1}.$$

3. Calculation of mass defect (Δm)

$$\Delta_m = P.m_p + N.m_n - A \ \Delta_m = 26.1,\!0073 + 30.1,\!0087 - 55,\!9349 \ \Delta_m = 0,\!5129\,amu$$