Chapitre 2: Modélisation des structures en 2D par le logiciel SAP2000

Université Aboubakr Belkaid Tlemcen

Dr. Mahi Imene

Université Abou Bekr Belkaid

Tlemcen

Faculté de Technologie

Département de Génie civil

Email :imenemahi@gmail.

сот

1.0 Mars 2024

Paternité - Pas d'Utilisation Commerciale : http://creativecommons.org/licenses/by-nc/1.0/fr/

Table des matières

Objectifs	3
I - Note de cours :	4
1. Introduction	4
2. L'environnement de travail :	4
2.1. Les différents menus :	5
2.2. Interface graphique du logiciel SAP2000	7
II - TP	8
1. Exercice 01	
2. Exercice 02	8
III - Évaluation	10
1. Soit la structure suivante	10
Abréviations	12
Références	13
Webographie	14

Objectifs

Objectifs :

A l'issue de ce chapitre, l'étudiant sera capable de :

Réutiliser et maîtriser les commandes principales du logiciel SAP2000.

Modéliser un multi portique sous des combinaisons de charge à l'ELU et à l'ELS.

Prérequis :

L'étudiant doit savoir :

Des notions de base sur le logiciel SAP2000, étudiées en L3.

Des connaissances en calcul de structures, et analyse dynamique.

I Note de cours :

1. Introduction

SAP2000 est un logiciel de calcul de structures développé par (CSI^{**}). Il est utilisé par les ingénieurs en GC^{*} et en architecture pour analyser et dimensionner des structures de différentes complexité^{*}, y compris :

Bâtiments : immeubles de grande hauteur, maisons individuelles^{*}, etc.

Ponts : ponts poutres, ponts suspendus, etc.

Ouvrages d'art : tunnels, barrages^{*}, ^{*} etc.

Structures industrielles : charpentes métalliques, silos, etc.

SAP2000 offre une large gamme de fonctionnalités pour l'analyse structurelle, notamment :

Analyse statique et dynamique : Détermination des déplacements, des efforts internes et des contraintes dans les structures sous différentes charges et conditions^{*}.

Modélisation par éléments finis : Subdivision de la structure en éléments discrets pour une analyse plus précise.

Analyse non linéaire : Prise en compte des effets non linéaires tels que le comportement plastique des matériaux et les grandes déformations.

Outils de conception : Aide au dimensionnement des éléments de la structure selon les normes en vigueur.

Bibliothèque de matériaux et de sections : Accès à une large base de données de matériaux et de sections courantes.

Génération de rapports : Création de rapports détaillés et personnalisables sur les résultats de l'analyse.

2. L'environnement de travail :

L'interface de SAP2000 est composée de plusieurs menus et barres d'outils qui permettent d'accéder aux différentes fonctionnalités du logiciel. Voici les principales commandes que vous devez connaître pour utiliser SAP2000^{*} :

2.1. Les différents menus :

2.1.1. Menu Fichier : Nouveau : Créer un nouveau modèle. Ouvrir : Ouvrir un modèle existant. Enregistrer : Enregistrer le modèle actuel. Enregistrer sous : Enregistrer le modèle actuel sous un nouveau nom. Imprimer : Imprimer le modèle actuel. Quitter : Quitter SAP2000. 2.1.2. Menu Edition : Annuler : Annuler la dernière action effectuée. Rétablir : Rétablir la dernière action annulée. Couper : Couper les éléments sélectionnés. Copier : Copier les éléments sélectionnés. Coller : Coller les éléments copiés ou coupés. Supprimer : Supprimer les éléments sélectionnés. 2.1.3. Menu Affichage : Zoom avant : Augmenter le zoom sur la zone sélectionnée. Zoom arrière : Diminuer le zoom sur la zone sélectionnée. Zoom tout : Afficher l'ensemble du modèle. Ajustement automatique : Ajuster l'affichage à la taille de la fenêtre. Propriétés de la vue : Modifier les propriétés de la vue actuelle. 2.1.4. Menu Dessin : Point : Créer un point. Ligne : Créer une ligne. Poly ligne : Créer une polyligne. Cercle : Créer un cercle. Rectangle : Créer un rectangle. Arc : Créer un arc. 2.1.5. Menu Définir :

Matériaux : Définir les propriétés des matériaux utilisés dans le modèle.Sections : Définir les propriétés des sections des éléments du modèle.

Charges : Définir les charges appliquées au modèle.

Appuis : Définir les appuis du modèle.

Combinaisons de charges : Définir les combinaisons de charges pour l'analyse.

2.1.6. Menu Analyse :

Lancer l'analyse : Lancer l'analyse du modèle.

Afficher les résultats : Afficher les résultats de l'analyse.

Exporter les résultats : Exporter les résultats de l'analyse vers un fichier texte ou un tableur.

2.1.7. Menu Outils :

Options : Modifier les options du logiciel.

Macros : Créer et exécuter des macros.

Aide : Accéder à l'aide en ligne de SAP2000.

2.2. Interface graphique du logiciel SAP2000

2.2.1. Barre d'outils standard : Nouveau : Créer un nouveau modèle. Ouvrir : Ouvrir un modèle existant. Enregistrer : Enregistrer le modèle actuel. Couper : Couper les éléments sélectionnés. Copier : Copier les éléments sélectionnés. Coller : Coller les éléments copiés ou coupés. Supprimer : Supprimer les éléments sélectionnés. Zoom avant : Augmenter le zoom sur la zone sélectionnée. Zoom arrière : Diminuer le zoom sur la zone sélectionnée. Zoom tout : Afficher l'ensemble du modèle. 2.2.2. Barre d'outils de dessin : Point : Créer un point. Ligne : Créer une ligne. Poly ligne : Créer une polyligne. Cercle : Créer un cercle. Rectangle : Créer un rectangle. Arc : Créer un arc. 2.2.3. Barre d'outils d'analyse :

Lancer l'analyse : Lancer l'analyse du modèle.

Afficher les résultats : Afficher les résultats de l'analyse.

II TP

1. Exercice 01

Modéliser le portique métallique suivant, soumis à une charge permanente de 3 KN/ml et une charge d'exploitation de 1.5 KN/ml, les combinaisons de charges à l'ELU et à l'ELS sont à considérer lors de l'analyse. Le poteau est un HEB300, et la poutre est un profilé métallique IPE300

Portique métallique à modéliser

2. Exercice 02

Modéliser le portique en béton armé suivant, soumis à une charge permanente de 5 KN/ml et une charge d'exploitation de 2 KN/ml, les combinaisons de charges à l'ELU et à l'ELS sont considérés lors de l'analyse. La section des poteaux est 40*40 cm², la section des poutres est 35*40 cm²

Structure en 2D à modéliser

III Évaluation

1. Soit la structure suivante

les Sections sont définies comme :

Poutre Principale : PP 30x40 cm2 Poutre secondaire : PS 30x30 cm2 Poteaux : POT 30x30 cm2 Matériaux

B25 avec densité du béton= 25KN/m3

Hauteur de l'étage : 3m

Questions : Déterminer

- 1. La réaction d'appui sous le poteau positionner en intersection des axes A et 5
- 2. Le moment de flexion de la poutre principale.
- 3. L'effort normal dans le poteau a l'intersection des axes A et 1

Abréviations

abrev2 : Computers & Structures Inc

abrev3 : Génie civil

Références

ref01

Hoxana Consulting Engineers, The Impact Of Technology On The Civil Engineering Profession, February 9, 2018

ref02

Asmaa G. Salih, Heba A. Ahmed, THE EFFECTIVE CONTRIBUTION OF SOFTWARE APPLICATIONS IN VARIOUS DISCIPLINES OF CIVIL ENGINEERING, International Journal of civil engineering and technology, 5 (12), (2014), pp. 316-333

ref03

Manual SAP 2000, GETTING STARTED : Linear and Nonlinear Static and Dynamic Analysis and Design of Three-Dimensional Structures, Computers and Structures, Inc., 2004.

Webographie

https://www.csiamerica.com/products/sap2000

https://www.batiweb.com/famille/logiciel-de-calcul-de-structure-2344