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We already know some classic functions : exp, ln, cos, sin, tan. In this
chapter, we are going to add some new functions to our catalog : cosh,
sinh, tanh, arccos, arcsin, arctan, arg cosh, arg sinh, arg tanh.

For example when a necklace is held between two hands then the
drawn curve is a chain of which the equation involves the hyperbolic
cosine and a parameter a (that depends on the length of the wire and
the spacing of the posts)

y = a cosh
(

x

a

)
.
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Logarithm

Definition 1
There exists a unique fucntion, written ln :]0, +∞[→ R such that :

ln′(x) = 1
x

(for all x > 0) and ln(1) = 0.

In addition, this function verifies (for all a, b > 0) :
1 ln(a × b) = ln a + ln b,

2 ln(1
a

) = − ln a,
3 ln(an) = n ln a, (for all n ∈ N)
4 ln is a continuous function, strictly increasing and defines a

bijection of ]0, +∞[ on R,

5 lim
x→0

ln(1 + x)
x

= 1,
6 We have ln x ≤ x − 1 (for all x > 0).
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ln x is called the Natural Logarithm. It is caracterized by ln(e) = 1.
We define the base a’s logarithm by

loga(x) = ln(x)
ln(a)

So that loga(a) = 1.
For a = 10 we get the decimal logarithm log10 such that
log10(10) = 1 (and so log10(10n) = n).

x

y

ln x

e

1

10
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Exponential

Definition 2
The reciprocal bijection of ln :]0, +∞[→ R is called the exponential
function, written exp : R →]0, +∞[.

x

y exp x

e

1

10
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Properties

For x ∈ R we also write down ex for exp(x).

Proposition 1
The exponential function veries the following properties :

exp(ln x) = x for all x > 0 and ln(exp x) = x for all x ∈ R

exp(a + b) = exp(a) × exp(b)
exp(nx) = (exp x)n

exp : R →]0, +∞[ is a continuous function, strictly increasing
verifying lim

x→−∞
exp x = 0 and lim

x→+∞
exp = +∞.

The exponential function is a a differentiable function and
exp′ x = exp x, for all x ∈ R. In addition exp x ≥ 1 + x.
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Power and Comparison
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Definitions
By definition, for a > 0 and b ∈ R,

ab = exp
(
b ln a

)
Notes 1

√
a = a

1
2 = exp

(1
2 ln a

)
.

n
√

a = a
1
n = exp

( 1
n

ln a

)
(nth root).

We also write down exp x by ex which is justified by the following
calculus : ex = exp (x ln e) = exp(x).
The functions x 7→ ax are also called exponential functions and
systematically reduce to the classical exponential function by the
equality ax = exp(x ln a). Do not confuse this functions with the
power functions x 7→ xa.
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Properties
Proposition 2
Let x, y > 0 and a, b ∈ R.

xa+b = xaxb

x−a = 1
xa

(xy)a = xaya

(xa)b = xab

ln(xa) = a ln x

Let us compare the functions ln x, exp x with x :

Proposition 3

lim
x→+∞

ln x

x
= 0 et lim

x→+∞

exp x

x
= +∞.
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Graphically
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Inverse Circular Functions
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Arccosinus

Let us consider the cosinus function cos : R → [−1, 1], x 7→ cos x. To
obtain a bijection from this function, we must consider restricting the
cosinus to the interval [0, π]. In this interval, the cosinus function is
continuous and stricly decreasing, so the restriction

cos| : [0, π] → [−1, 1]

is a bijection.

Definition 3
The reciprocal bijection of the function cos is the arccosinus function :

arccos : [−1, 1] → [0, π]
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Graphically
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Properties

Proposition 4
We have by definition the reciprocal bijection :

cos
(

arccos(x)
)

= x ∀x ∈ [−1, 1]
arccos

(
cos(x)

)
= x ∀x ∈ [0, π]

In other words :

If x ∈ [0, π] cos(x) = y ⇐⇒ x = arccos y

Let us finish with the derivative function of arccos:

arccos′(x) = −1√
1 − x2

∀x ∈] − 1, 1[
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Arcsinus

The restriction
sin| : [−π

2 , +π
2 ] → [−1, 1]

is a bijection. Its reciprocal bijection is the function arcsinus :

arcsin : [−1, 1] → [−π
2 , +π

2 ].

sin
(

arcsin(x)
)

= x ∀x ∈ [−1, 1]
arcsin

(
sin(x)

)
= x ∀x ∈ [−π

2 , +π

2 ]

If x ∈ [−π

2 , +π

2 ] sin(x) = y ⇐⇒ x = arcsin y

arcsin′(x) = 1√
1 − x2

∀x ∈] − 1, 1[
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Geometrically
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Arctangent

The restriction
tan| :] − π

2 , +π
2 [→ R

is a bijection. Its reciprocal bijection is the function arctangente :

arctan : R →] − π
2 , +π

2 [.

tan
(

arctan(x)
)

= x ∀x ∈ R
arctan

(
tan(x)

)
= x ∀x ∈] − π

2 , +π

2 [

If x ∈] − π

2 , +π

2 [ tan(x) = y ⇐⇒ x = arctan y

arctan′(x) = 1
1 + x2 ∀x ∈ R
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Geometrically
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Hyperbolic Cosinus

For x ∈ R, The hyperbolic cosinus is :

cosh x = ex + e−x

2

The restriction cosh| : [0, +∞[→ [1, +∞[ is a bijection. Its reciprocal
bijection is the function arg cosh : [1, +∞[→ [0, +∞[.
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Geometrically
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Hyperbolic Sinus and its inverse
For x ∈ R, the hyperbolic sinus is :

sinh x = ex − e−x

2

sinh : R → R Is a continuous function, differentiable, strictly increasing
and verifying lim

x→−∞
sinh x = −∞ and lim

x→+∞
sinh x = +∞, so it’s a

bijection. Its reciprocal bijection is the function arg sinh : R → R.

Proposition 5
cosh2 x − sinh2 x = 1
cosh′ x = sinh x, sinh′ x = cosh x

arg sinh : R → R is strictly increasing and continuous.

arg sinh is a differentiable function and arg sinh′ x = 1√
x2 + 1

.

arg sinh x = ln
(
x +

√
x2 + 1

)
.
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Hyperbolic Tangent

By definition the hyperbolic tangent is :

tanh x = sinh x

cosh x

The function tanh : R →] − 1, 1[ is a bijection, we write
arg tanh :] − 1, 1[→ R its reciprocal bijection.
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Geometrically
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Hyperbolic Trigonometry

1 = cosh2 x − sinh2 x

cosh(a + b) = cosh a · cosh b + sinh a · sinh b

sinh(a + b) = sinh a · cosh b + sinh b · cosh a

cosh′ x = sinh x sinh′ x = cosh x

tanh′ x = 1 − tanh2 x = 1
cosh2 x

arg cosh′ x = 1√
x2 − 1

(x > 1) arg sinh′ x = 1√
x2 + 1

arg tanh′ x = 1
1 − x2 (|x| < 1)

arg cosh x = ln
(
x +

√
x2 − 1

)
(x ≥ 1)

arg sinh x = ln
(
x +

√
x2 + 1

)
(x ∈ R)

arg tanh x = 1
2 ln

(1 + x

1 − x

)
(−1 < x < 1)
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Good Luck !!
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