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MOTIVATION
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We already know some classic functions : exp, In, cos, sin, tan. In this
chapter, we are going to add some new functions to our catalog : cosh,
sinh, tanh, arccos, arcsin, arctan, arg cosh, argsinh, arg tanh.

For example when a necklace is held between two hands then the
drawn curve is a chain of which the equation involves the hyperbolic
cosine and a parameter a (that depends on the length of the wire and

the spacing of the posts)
Yy = acosh <E> .
a
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LOGARITHM AND EXPONENTIAL
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Logarithm

Definition 1
There exists a unique fucntion, written In :]0, +00[— R such that :
1
In'(z) = - (for all x > 0) and In(1) = 0.
In addition, this function verifies (for all a,b > 0) :
Q In(axb)=Ina+Inb,
1
Q In(-) =—Ina,
a
@ In(a") =nlna, (for all n € N)
@ In is a continuous function, strictly increasing and defines a
bijection of ]0, 4+o00[ on R,

@ lim M =1,
z—0 x
@ We have Inz <z — 1 (for all z > 0).

Logarithm and exponential



Inz is called the Natural Logarithm. It is caracterized by In(e) = 1.

We define the base a’s logarithm by

log,(z) = In(a)

So that log,(a) = 1.
For a = 10 we get the decimal logarithm log;, such that
log((10) = 1 (and so log;4(10™) = n).

Logarithm and exponential



Exponential

Definition 2

The reciprocal bijection of In :]0, +00[— R is called the exponential
function, written exp : R —]0, +o00].
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Properties

For 2 € R we also write down e” for exp(z).

Proposition 1

The exponential function veries the following properties :

‘exp(ln xz) =z for all z > 0|and |In(expz) = x for all z € R

e exp(a +b) = exp(a) x exp(b)
e exp(nz) = (expz)"
@ exp : R —]0,4o00[ is a continuous function, strictly increasing

verifying IEEnOO expx = 0 and :vgr—‘,r—loo exp = +o00.

@ The exponential function is a a differentiable function and
exp' © = expz, for all z € R. In addition expz > 1 + =.
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Definitions

By definition, for ¢ > 0 and b € R,

a’ = exp (bIna)

Notes 1
o \a=az = exp (%lna).

1
o {/a=an =exp (— In a> (n'" root).
n

e We also write down exp x by e which is justified by the following
calculus : e” = exp (zlne) = exp(z).

o The functions x — a” are also called exponential functions and
systematically reduce to the classical exponential function by the
equality a® = exp(zIna). Do not confuse this functions with the
power functions z — z°.

y
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Properties

Proposition 2
Let z,y > 0 and a,b € R.

b

+b __ T

o |z’ =

:Ca
1
a

x

° (Ia)b — :Eab

o In(z%) =alnzx

Let us compare the functions In z, exp z with z :

Proposition 3
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Graphically
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INVERSE CIRCULAR FUNCTIONS




Arccosinus

Let us consider the cosinus function cos : R — [—1,1],  — cosz. To
obtain a bijection from this function, we must consider restricting the
cosinus to the interval [0, 7]. In this interval, the cosinus function is
continuous and stricly decreasing, so the restriction

cos| : [0, 7] = [-1,1]

is a bijection.

Definition 3
The reciprocal bijection of the function cos is the arccosinus function :

arccos : [—1,1] — [0, 7]

rcular Functions Arccosinus 16 / 30



Graphically
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Properties

Proposition 4

We have by definition the reciprocal bijection :

cos (arccos(z)) =z Va € [-1,1]
arccos (cos(z)) =z Vz € [0, 7]

In other words :

If ze€l0,m

cos(x) =y <= x = arccosy

Let us finish with the derivative function of arccos:

arccos’ (z)

—1
- Vzq-1,1
V1—2z2 ] [

Inverse Circular Functions

Arccosinus



Arcsinus

The restriction
sing : [, +5] — [-1,1]

is a bijection. Its reciprocal bijection is the function arcsinus :

arcsin : [—1,1] =[5, +5].

sin (arcsin(z)) =z Va € [-1,1]

V1—2x2

arcsin (sin(a:)) =z Vrce [_g _,_g]
T ] .
If ze [—574‘5] sin(z) =y <= x = arcsiny
. 1
arcsin’(z) = Vo €] —1,1]

Inverse Circular Functions

Arcsinus
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Geometrically
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Arctangent

The restriction
tan :] — 5, +5[— R

is a bijection. Its reciprocal bijection is the function arctangente :

arctan : R —] — 5, +75[.

tan (arctan(z)) =z Vx €R

arctan (tan(z)) =z Vo €] — g,+g[
T
If 356]—5,4-5[ tan(z) =y <= x = arctany
arctan’(z) = 1 Vz € R
1422
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Geometrically

Arctangent
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HYPERBOLIC FUNCTIONS AND
INVERSES
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Hyperbolic Cosinus

For x € R, The hyperbolic cosinus is :

coshz =

2

The restriction cosh; : [0, +-00[— [1, +oo is a bijection. Its reciprocal

bijection is the function argcosh : [1

Fonctions hyperboliques et hyperboliques inverses

, Foo[— [0, +o0].

Hyperbolic Cosinus and its inverse
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Geometrically
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Hyperbolic Sinus and its inverse

For x € R, the hyperbolic sinus is :

e’ —e

sin r B

sinh : R — R Is a continuous function, differentiable, strictly increasing

and verifying lim sinhaz = —oo and lim sinhz = 400, so it’s a
T——00 T—+00

bijection. Its reciprocal bijection is the function argsinh : R — R.

Proposition 5
e cosh?z —sinh?z =1
e cosh’z = sinh z, sinh’ z = cosh

o argsinh : R — R is strictly increasing and continuous.

1
e argsinh is a differentiable function and argsinh’z = —.

22 +1
e argsinhz =In (z + Va2 +1).
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Hyperbolic Tangent

By definition the hyperbolic tangent is :

sinh x

tanh x =

cosh z

The function tanh : R —] — 1, 1] is a bijection, we write
arg tanh :] — 1, 1[— R its reciprocal bijection.

Fonctions hyperboliques et hyperboliques inverses Hyperbolic Tangent and its inverse

N
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Geometrically
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Hyperbolic Trigonometry

1 = cosh?z — sinh?z
cosh(a + b) = cosha - coshb + sinha - sinh b
sinh(a + b) = sinha - coshb + sinh b - cosh a

cosh’ x = sinh z sinh’ x = cosh z
1
tanh’z = 1 — tanh?z = 5
cosh” x
1 1
argcosh' t = —— (x>1 argsinh’z = ——
g = @>1) g =

arg tanh’ x = 1 (lz] < 1)

e
argcoshz =In (z + Va2 —1) (z>1)
argsinhz =In (z + Va2 +1) (z€R)
1+$> (-l<z<])

11—z
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