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Introduction

In physics and mathematics, a series expansion (denoted DL) of a function at a
point is a polynomial approximation of this function at the neighborhood of this
point, i.e. the writing of this function in the form of the sum of :

a polynomial function denoted by Pn(x) and
a negligible remainder noted Rn(x) in the neighborhood of the considered
point.

In physics, the expansion series make it possible to approach the functions to
simplify the calculations.
In mathematics, they make it easier to find limits of functions, to calculate
derivatives, to prove that a function is integrable or not, or to study the positions of
curves in relation to tangents.

Introduction and Prerequisites 4 / 40



Prerequisites

Before studying the expansion series strictly speaking, it is necessary to make some
reminders on the small o of xn, noted o(xn).

We consider two functions f and g, and a real number a, such that : lim
x→a

f(x)
g(x) = 0.

Then we can say that f is negligible compared to g in the neighborhood of a (it is
important to specify in the neighborhood of which point !).
Indeed, in the neighborhood of 0 for example, x is negligible compared to 1/x, but
in the neighborhood of +∞, it is 1/x that is negligible compared to x. So just saying
1/x is negligible compared to ... doesn’t make sense if you don’t specify near which
point..
When f is negligible compared to g in the neighborhood of a, we then write :
f(x) = o (g(x)).

Examples : in the neighborhood of 0 : x6 = o(x3), x2 = o(x).

∀p > n, xp = o(xn).
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Taylor’s theorem

Taylor’s theorem 6 / 40



Definition 1 (Taylor’s formula with Peano form of the remainder.)
Let I be an interval of R, a an element of I and f : I → R a differentiable function
at a up to a certain order n ⩾ 1.
Then for any real number x belonging to I, we have the Taylo’s formula with Peano
form of the remainder

f(x) = f(a) + f ′(a)
1! (x − a) + f ′′(a)

2! (x − a)2 + · · · + f (n)(a)
n! (x − a)n + o ((x − a)n)

or equivalently

f(x) =
n∑

k=0

f (k)(a)
k! (x − a)k + Rn(x)

where the remainder Rn(x) is a negligible function with respect to (x − a)n in the
neighborhood of a.
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Remarks :
By setting h = x − a, this formula can also be expressed as :

f(a + h) =
n∑

k=0

f (k)(a)
k! hk + Rn(h)

where the remainder Rn(h) is a negligible function compared to hn in the
neighborhood of 0.
According to the hypotheses on the function f , we can give expressions and
estimates of the remainder Rn(x) to obtain other more precise formulas such
as : the Taylor-Lagrange formula, Taylor-Cauchy formula and Taylor with
integral remainder.
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Example : Consider the function f : x → ex.
f is of class C∞ on R with f (k) = ex and therefore f (k)(0) = 1, ∀k ∈ N.
By the Taylor-Young formula in the neighborhood of 0, we get

ex =
n∑

k=0

1
k!x

k + o(xn)

= 1 + x + 1
2!x

2 + 1
3!x

3 + · · · + 1
n!x

n + o(xn)

in particular
ex = 1 + x + 1

2x2 + 1
6x3 + 1

24x4 + o(x4)
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Remark : The Taylor polynomial of order 4 at the point 0 is very close to ex in
neighborhood of 0.
To verify, let P4(x) = 1 + x + 1

2x2 + 1
6x3 + 1

24x4 and evaluate at x = 0.1 (close to
0), we get

e0.1 = 1.10517091
P4(0.1) = 1.10517083
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Series expansion
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I denotes a non-singular interval and n a natural number.
The functions considered here are real-valued.

Definition 2 (Series expansion)
Let a be a point from I or a finite end of I and D = I or D = I\{a}.
We say that f : D → R admits a series expansion to the order n at a (abbreviated
SEn(a) ) if there exist a0, a1, · · · , an such that when x → a

f(x) = a0 + a1(x − a) + a2(x − a)2 + · · · + an(x − a)n + o ((x − a)n)

The polynomial function x → a0 + a1(x − a) + · · · + an(x − a)n is then called
regular part of SEn(a) of f .

Remarks : In the regular part of SE, each term of the sum is negligible compared
to the one before it.
A SEn(a) gives information on the behavior of f at a and only at a.
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Example : SEn(0) of x → 1
1 − x

We have
1 + x + · · · + xn = 1 − xn+1

1 − x

then
1

1 − x
= 1 + x + · · · + xn + xn+1

1 − x

but
xn+1

1 − x
= xn x

1 − x
= o (xn)

since x

1 − x
−−−→
x→0

0.

so
1

1 − x
= 1 + x + · · · + xn + o (xn)

which is a series expansion to the order n at 0.
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Proposition 1
If f : D → R admits a SEn(a) of the form :

f(x) = a0 + a1(x − a) + · · · + an(x − a)n + o ((x − a)n)

then, for every m ⩽ n, f admits a SEm(a) being obtained by truncation :

f(x) = a0 + a1(x − a) + · · · + am(x − a)m + o ((x − a)m)

Example : let P (x) = a0 + a1x + · · · + apxp a polynomial function.
its SEn(0) is given by
for n ⩽ p, we have P (x) = a0 + a1x + · · · + anxn + o(xn).
for n > p, we have P (x) = a0 + a1x + · · · + apxp + o(xp).

Theorem 1 (Uniqueness)
If f : D → R admits a SEn(a) then this one is unique.
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Existence of SE

Proposition 2
f admits a SE of order 0 at a if and only if f converges at a.
Moreover, if this is the case i.e. lim

x→a
f(x) = a0, then the SE of order 0 of f is given

by f(x) = a0 + o(1).

Proposition 3
f is continuous at a and admits a SE of order 1 at a if and only if f is derivable at a.
Moreover, f ′(a) = a1, so the SE of order 1 of f is given by

f(x) = f(a) + f ′(a)(x − a) + o(x − a)

Examples :
f(x) = ln(x − 2), a = 2.
we have lim

x→2+
ln(x − 2) = −∞ so f does not admit a SE at a = 2.
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f(x) = |x| converges at 0 so it admits a SE of order 0 at 0.
On the other hand f is not differentiable at 0, so it does not admit a SE of
order 1 at 0.
f(x) =

√
1 + sin x, a = 0.

Since f is of class C∞ in neighborhood of 0, it admits a Taylor expansion at 0
of order n, ∀n ∈ N, therefore it admits a SE at 0 of order n, ∀n ∈ N.

x → sin
( 1

x

)
does not converge at 0, so there is no SE at 0.
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Theorem 2 (Relationship between SE and Taylor’s expansion)
Let f : I → R and a ∈ I.
If f is of class Cn then f admits a series expansion of order n at a of the form :

f(x) =
n∑

k=0

f (k)(a)
k! (x − a)k + o ((x − a)n)

Remark : This theorem provides a sufficient condition for the existence of a SEn(a).
In other words : If f is of class Cn on I then it admits a SEn(a) and its polynomial part
coincides with the Taylor polynomial of f of order n at a.
The converse implication is false ; there exist functions admitting a SEn(a) which are not
even of class C1 and which therefore do not admit a Taylor expansion of order n at a.
For example the function f defined by

f (x) =
{

1 + x + x2 + x3 sin(1/x2), if x ̸= 0
1, if x = 0

This function admits a SE2(0) (just notice that x3 sin(1/x2) = o(x2)), on the other hand it
is not even twice differentiable at 0 (because its first derivative is not continuous at 0).
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SE at 0 of usual functions

1
1 − x

= 1 + x + x2 + · · · + xn + o(xn) =
n∑

k=0

xk + o(xn)

1
1 + x

= 1 − x + x2 − x3 + · · · + (−1)nxn + o(xn) =
n∑

k=0

(−1)kxk + o(xn)

ex = 1 + x + 1
2!x

2 + 1
3!x

3 + · · · + 1
n!x

n + o(xn) =
n∑

k=0

1
k!x

k + o(xn)

cos x = 1 − 1
2!x

2 + 1
4!x

4 + · · · + (−1)n

(2n)! x2n + o(x2n) =
n∑

k=0

(−1)k

(2k)! x2k + o(x2n)

sin x = x − 1
3!x

3 + 1
5!x

5 + · · · + (−1)n

(2n + 1)!x
2n+1 + o(x2n+1)

=
n∑

k=0

(−1)k

(2k + 1)!x
2k+1 + o(x2n+1)
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Since ch(x) = 1
2

(
ex + e−x

)
, we get by summing the expansions of ex and of

e−x :

ch(x) = 1 + 1
2!x

2 + 1
4!x

4 + · · · + 1
(2n)!x

2n + o(x2n) =
n∑

k=0

1
(2k)!x

2k + o(x2n)

sh(x) = x + 1
3!x

3 + 1
5!x

5 + · · · + 1
(2n + 1)!x

2n+1 + o(x2n+1)

=
n∑

k=0

1
(2k + 1)!x

2k+1 + o(x2n+1)

ln(1 + x) = x − 1
2x2 + 1

3x3 + · · · + (−1)n−1

n
xn + o(xn) =

n∑
k=1

(−1)k−1

k
xk + o(xn)

For α ∈ R fixed
(1 + x)α = 1 + αx + α(α − 1)

2! x2 + · · · + α(α − 1) · · · (α − n + 1)
n! xn + o(xn)

For α = p ∈ N

(1 + x)α =
(

p

0

)
+

(
p

1

)
x +

(
p

2

)
x2 + · · · +

(
p

n

)
xn + o(xn) =

n∑
k=0

(
p

k

)
xk + o(xn)
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Determination of seriesexpansion
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Transfering the problem to 0

Method
To determine a series expansion at a of a function x → f(x), we relocate the
problem to 0 using the change of variable x = a + h.
We then determine a series expansion at 0 of the function h → f(a + h) then we
transpose this expansion at a by replacing h by x − a.

Examples :
SE2(1) of x → ex.
When x → 1, we put x = 1 + h, h = x − 1 with h → 0

ex = e1+h = e.eh = e
(

1 + h + 1
2h2 + o(h2)

)
= e + e.h + e

2h2 + o(h2)

then
ex = e + e(x − 1) + e

2(x − 1)2 + o
(
(x − 1)2)

Remark : Do not develop this expression because otherwise we lose the
visualization of the orders of magnitude in the neighborhood of 1.
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SE3(π/3) of x → cos x.
When x → π/3, we put x = π/3 + h, h = x − π/3 with h → 0.

cos x = cos
(

π

3 + h
)

= 1
2 cos h −

√
3

2 sin h

But cos h = 1 − 1
2h2 + o(h3) and sin h = h − 1

6h3 + o(h3) so

cos x = 1
2 −

√
3

2 h − 1
4h2 +

√
3

12 h3 + o(h3)

then

cos x = 1
2 −

√
3

2

(
x − π

3

)
− 1

4

(
x − π

3

)2
+

√
3

12

(
x − π

3

)3
+ o

((
x − π

3

)3
)

SE2(1) of x → ln x. When x → 1, let’s put x = 1 + h with h → 0

ln x = ln(1 + h) = h − 1
2h2 + o(h2) = (x − 1) − 1

2(x − 1)2 + o
(
(x − 1)2)
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DL2(2) of
√

x
When x → 2, let’s put x = 2 + h with h → 0

√
x =

√
2 + h =

√
2
√

1 + h/2

Or
√

1 + u = 1 + 1
2u − 1

8u2 + o(u2), when u → 0 then for u = h

2 → 0 we have√
1 + h/2 = 1 + 1

4h − 1
32h2 + o(h2)

then
√

x =
√

2 +
√

2
4 (x − 2) −

√
2

32 (x − 2)2 + o
(
(x − 2)2)

Remark : Here the change of variable x = 1 + h would have been unsuitable,
since when x → 2, we have h → 1 and not h → 0.
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SE of a product

Method
Assuming that in neighborhood of 0 we have
f(x) = a0 + a1x + · · · + anxn + o(xn) and g(x) = b0 + b1x + · · · + bnxn + o(xn).
The series expansion of a product is the product of the series expansions of the
factors i.e.

f(x)g(x) = a0b0 + (a0b1 + a1b0) x + · · · + (a0bn + · · · + anb0)xn + o(xn)

which determines the SEn(0) of x → f(x)g(x).

Examples :

SE3(0) of x → ex

1 − x
, when x → 0

ex = 1 + x + 1
2x2 + 1

6x3 + o(x3) and 1
1 − x

= 1 + x + x2 + x3 + o(x3)

then
ex

1 − x
= 1 + 2x + 5

2x2 + 8
3x3 + o(x3)
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SE4(0) of x → cos x.chx, when x → 0

cos x = 1 − 1
2x2 + 1

24x4 + o(x4) and chx = 1 + 1
2x2 + 1

24x4 + o(x4)

then

cos x.chx = 1 +
(1

2 − 1
2

)
x2 +

( 1
24 + 1

24 − 1
4

)
x4 + o(x4)

= 1 − 1
6x4 + o(x4)
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SE3(0) of x → ln(1 + x)ex.
Since the expansion of ln(1 + x) starts by the term x, an expansion of order 2
of ex is enough to carry out the calculations.
Indeed, by multiplying by ln(1 + x), the term o(x2) of the expansion of ex

becomes o(x3).
When x → 0

ln(1 + x) = x − 1
2x2 + 1

3x3 + o(x3) and ex = 1 + x + 1
2x2 + o(x2)

then

ln(1 + x)ex = x +
(

1 − 1
2

)
x2 +

(1
2 − 1

2 + 1
3

)
x3 + o(x3)

= x + 1
2x2 + 1

3x3 + o(x3)
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SE4(0) of x → ln(1 + x) (1 − cos x).
The expansion of ln(1 + x) starting by x, an expansion of order 3 of (1 − cos x)
is sufficient to carry out the calculations.

1 − cos x = 1
2x2 + o(x3)

Also, the expansion of 1 − cos x starting by a term x2, an expansion to the
order 2 of ln(1 + x) is enough.

ln(1 + x) = x − 1
2x2 + o(x2)

then
ln(1 + x) (1 − cos x) = 1

2x3 − 1
4x4 + o(x4)
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SE of composition of functions

Method
Suppose f(x) −−−→

x→0
0 and g(u) = a0 + a1u + · · · + anun + o(un) when u → 0.

Since we can write o(un) = unε(u) with ε −→
0

0, we have if the composition is allowed

g(f(x)) = a0 + a1f(x) + · · · + an (f(x))n + (f(x))n ε (f(x))

with ε (f(x)) −−−→
x→0

0
This can be written as :

g (f(x)) = a0 + a1f(x) + · · · + an (f(x))n + o ((f(x))n)

We can substitute u by f(x) in the SEn(0) of g(u) since f(x) −−−→
x→0

0.

So by knowing a series expansion of f , we can deduce a series expansion of g (f(x)).
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Examples :
SE6(0) of x → ln(1 + x2 + x3) when x → 0
ln(1 + x2 + x3) = ln(1 + u) with

u = x2 + x3 → 0
u2 = x4 + 2x5 + x6

u3 = x6 + o(x6)
and o(u3) = o(x6)

A series expansion to order 3 of ln(1 + u) is enough.

ln(1 + u) = u − 1
2u2 + 1

3u3 + o(u3)

then
ln(1 + x2 + x3) = x2 + x3 − 1

2x4 − x5 − 1
6x6 + o(x6)
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SE3(0) of e
1

1+x , when x → 0

e
1

1+x = e1−x+x2−x3+o(x3) = e.eu

with

u = −x + x2 − x3 + o(x3) → 0
u2 = x2 − 2x3 + o(x3)
u3 = −x3 + o(x3)
and o(u3) = o(x3).

eu = 1 + u + 1
2u2 + 1

6u3 + o(u3)

then
e

1
1+x = e − e.x + 3e

2 x2 − 13e
6 x3 + o(x3)
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SE of a Quotient
Method
The regular part of SE of the quotient f

g
is the quotient in the division according to

the increasing powers of the regular part of f by the regular part of g.

Examples :

SE3(0) of x → ex

1 − x

1 +x +x2

2 +x3

6 1 − x

−1 +x

2x +x2

2 1 +2x +5
2x2 + 8

3x3

−2x +2x2

5
2x2 +x3

6
−5

2x2 +5
2x3

8
3x3

ex

1 − x
= 1 + 2x + 5

2x2 + 8
3x3 + o(x3)Determination of series expansion SE of a Quotient 31 / 40



SE5(0) of x → tan x

x −1
6x3 + 1

120x5 1− 1
2x2 + 1

24x4

−x +x3

2 −x5

24
x3

3 −x5

30 x +1
3x3 + 2

15x5

−x3

3
x5

6
2
15x5

tan x = x + 1
3x3 + 2

15x5 + o(x5)
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SE by derivation

Theorem 3
Let f be differentiable on I and admits a SE of order n at 0.
If f ′ admits a SE of order n − 1 at 0 then the regular part of expansion of f ′ is the
derivative of the regular part of the expansion of f .

Example : Since x → 1
1 − x

and its derivative x → 1
(1 − x)2 admit SE of order n

and n − 1 respectively at 0 (as they are of class C∞ on R∗), so by differentiating the
SE of x → 1

1 − x
we obtain that of its derivative.

1
1 − x

= 1 + x + x2 + · · · + xn + o(xn)

1
(1 − x)2 = 1 + 2x + 3x2 + · · · + nxn−1 + o(xn−1)
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Remark : it is possible that a differentiable function admits a SE of order n at 0
without its derivative admitting a SE of order n − 1 at 0. It is necessary to check
the conditions of the theorem before using it.

Example : Let n ∈ N and

f (x) =
{

1 + x + x2 cos(1/x), si x ̸= 0
1, if x = 0

When x → 0, we have f(x) = 1 + x + o(x) so then f admits a series expansion of
order 1 at 0.
On the other hand, its derivative

f ′ (x) =
{

1 + 2x cos(1/x) + sin(1/x), if x ̸= 0
1, if x = 0

does not admit a limit at 0 and therefore neither a series expansion at 0.
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Applications
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I Determination of equivalents
Definition 3 (Equivalents of functions)
We say that f is equivalent to g at a if we can write at neighborhood of a

f(x) = g(x)θ(x)

with θ −→
a

1 We note then f ∼ g or f(x) ∼ g(x) when x → a.
If the function g does not vanish in the neighborhood of a then we have

f(x) ∼ g(x) ⇔ f(x)
g(x) −−−→

x→a
1

Example :

when x → +∞, x2 + x + 2 ln(x) ∼ x2

when x → 0, x2 + x + 2 ln(x) ∼ 2 ln x

SE for Determination of simple equivalents
The first non-zero term of a series expansion provides a simple equivalent of the
function studied at the considered point.
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Examples :
From the series expansions of the usual functions, we obtain these famous
equivalents when x → 0 :

sin x ∼ x, tan x ∼ x, ln(1+x) ∼ x, ex−1 ∼ x, 1−cos x ∼ x2

2 , (1+x)α ∼ 1+αx.

Let us determine a simple equivalent of xx − x when x → 1.
It is important to begin by changing variable to get near 0.
Put x = 1 + h, with h = x − 1 → 0

xx − x = (1 + h)1+h − (1 + h) = e(1+h) ln(1+h) − (1 + h)

but

e(1+h) ln(1+h) = e(1+h)
(

h− h2
2 +o(h2)

)
= eh+ h2

2 +o(h2) = 1 + h + h2 + o(h2)

so
xx − x = h2 + o(h2) ∼ h2 ∼ (x − 1)2
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II Limit determination

SE to determine a limit
Obtaining an equivalent makes it possible to obtain the limit of the considered
function.

Examples :
Let’s find

lim
x→0

tan(2x) − 2 tan x

sin(2x) − 2 sin x

when x → 0

tan x = x + 1
3x3 + o(x3) then tan(2x) − 2 tan x ∼ 2x3

sin x = x − 1
6x3 + o(x3) then sin(2x) − 2 sin x ∼ −x3

Therefore
tan(2x) − 2 tan x

sin(2x) − 2 sin x
∼ 2x3

−x3 → −2
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Let us find

lim
x→+∞

(
cos 1

x

)x2

When x → +∞ (
cos 1

x

)x2

= exp
(

x2 ln
(

cos 1
x

))
but

cos 1
x

= 1 − 1
2x2 + o

( 1
x2

)
then ln

(
cos 1

x

)
∼ − 1

2x2 so x2 ln
(

cos 1
x

)
→ −1

2

and finally

lim
x→+∞

(
cos 1

x

)x2

= 1√
e
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III Local positioning of a curve and its tangent

SE to position a curve in relation to its tangent
Let f : I → R and a ∈ I.
We assume that f admits a series expansion of order n at a of the form :

f(x) = a0 + a1(x − a) + a2(x − a)2 + · · · + an(x − a)n + o ((x − a)n)

The function being defined at a, we have necessarily a0 = f(a) and a1 = f ′(a).
The equation of the tangent T to f at a is then given by y = a0 + a1(x − a).
It suffices then to study the sign of

f(x) − y = a2(x − a)2 + · · · + an(x − a)n + o ((x − a)n)

to deduce the position of the curve of f with respect to T at a.

Example : the curve of x → ex is above its tangent at 0 because

ex − (1 + x) ∼ x2

2 ⩾ 0, when x → 0.
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