

#### **PRATICAL WORK N° 02**

#### PREPARATION OF SOLUTION

### Objective of practical work:

The main objective of this manipulation is to prepare a solution from:

- 1. Commercialised solution of sulfuric acid H<sub>2</sub>SO<sub>4</sub>.
- 2. **Mother solution** prepared in question 1: the prepared solution in this case named **daughter solution**.
- 3. A solid chemical as well as potassium hydroxide KOH.

### Principal of manipulation:

These solutions can be prepared by:

- 1. **Dissolution liquid-liquid**: in this case a precise volume taken from the commercialised solution is dissolved in volume of solvent (e.g. distilled water).
- 2. **Dilution**: consist in preparing, from a **mother solution**, **that we know its concentration**, **a daughter solution** whose concentration **is lower**.
- 3. Dissolution solid-liquid: here, a calculated amount of chemical solid is dissolved in solvent.

## **Operating mode:**

1. Preparation of mother and daughter solutions of sulfuric acid: Dissolution liquid-liquid



2. Preparation of stock solution from chemical solid potassium hydroxide KOH: dissolution solid-liquid





#### Reminder:

- Normality (N): is the number of gram-equivalents of solute per litter of solution.
- Normality = number of gram equivalents x Molarity; N=z. M
- The gram-equivalent: is the quantity of solute comprising one mole of the particles considered (H<sup>+</sup>, OH<sup>-</sup>etc.)
- The mass titter (mass concentration): is the weight concentration expressed in mass unit per litter of solution, generally expressed in g. L<sup>-1</sup>; Cm =m/V; MM (molar mass) = Cm/Cn.

Note: "Addition of solvent (eg. water) to a solution does not change the amount of solute, but it changes the concentration of solution, so in this case we can write:

$$n_1 = n_2 \Rightarrow N_1V_1 = N_2V_2$$
 (when  $z \neq 1$ )

and  $C_1V_1 = C_2V_2$  (when z=1)

| Equipment used                                                                          | Chemicals used                                                           |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Volumetric flask (V=50 and 100 mL;)                                                     | Commercialised solution of H <sub>2</sub> SO <sub>4</sub> (95%, d=1.83); |
| Volumetric and graduated pipette (V=10 and 5 mL);                                       | Potassium hydroxide KOH;                                                 |
| Beaker (V=50 and 100 mL); Pipette pear; Spatula; Funnel; Electronic scale; Watch glass. | Distilled water.                                                         |

## Work to be done

**Safety rule:** The dilution of a concentrated acid in water **releases heat**, can cause **spattering**. Therefore, we can receive droplets of acid solution on ourself. So, it is important to remember this **safety rule** when preparing acidic solution:

when diluting a concentrated acid, put some water in the volumetric flask before to introduce the amount of concentrated solution. Mix and then top up to the gauge line.

### 1. Preparation of 100 mL of sulfuric acid (1 M): preparation of mother solution

Calculate **the mass of solute (acid)** necessary for the preparation of the requested solution? Deduce **the volume of** concentrated acid needed?

In a 100 mL volumetric flask, put some distilled water. Using a burette under fume hood, take the calculated volume of H<sub>2</sub>SO<sub>4</sub>. Fill with distilled water up to the mark, close then shake (follow diagram 01).





Diagram 01

# 2. Preparation of 50 mL of sulfuric acid (19.6 g/L): preparation of daughter solution

Calculate **the necessary volume** of to be taken from **the mother solution** for preparing **the daughter solution**? In **a 50 mL** volumetric flask, introduce the calculated volume using a graduated pipette. Fill the flask up to the mark with distilled water, close and shake. **(Follow the diagram 02).** 



Diagram 2



3. Preparation of 100 mL of potassium hydroxide (0.1 M):

Safety rule: don't touch the pellets of hydroxide sodium with fingers. U se the watch glass to weigh and gloves to protect your hand, this chemical is very corrosive.

# Quickly close the bottle to prevent the sodium hydroxide from becoming hydrated and carbonated in the air

- 1. Calculate the mass of sodium hydroxide (KOH) required for the requested solution?
- 2. Weigh the calculated mass.
- **3.** In a **100 mL** volumetric flask filled halfway with distilled water, add the calculated mass of KOH. Shake until complete dissolution then complete to the mark **(Follow diagram 03).**



Diagram 3