TP N°03 Acid-base dosage

Introduction

> One of the first definitions of an acid and a base was proposed in 1887 by Arrhenius and Ostwald. According to them, an acid was a compound with mobile hydrogen which released H^+ protons into water while a base was a compound which released OH⁻ hydroxide ions in an aqueous medium.

> In 1923, Bronsted and Lowry questioned the definition of Arrhenius and Ostwald and proposed a new definition. They defined an acid as a substance capable of giving up a proton and a base as a substance capable of capturing a proton.

 \succ At the same time, during the same year, Lewis proposed another definition. He defined an acid as an acceptor of electron pairs and a base as a donor of electron pairs.

An acid-base couple consists of an acid and its conjugate base (Acid/Base).

➤ An acid-base reaction involves two acid-base couples: the Acid1/Base1 couple and the Acid2/Base2 couple.

> An acid-base reaction is a chemical transformation between the acid of one pair and the base of another acid/base pair, via an exchange of H^+ ions. The full equation is a linear combination of the two specific half-equations of each pair.

 $Acid1 = Base1 + nH^{+}$ Base2 + nH⁺ = Acid2 Acid1 + Base2 = Base1 + Acid2 (this equation is called a «balance equation»)

Principle of a dosage

A solution contains a dissolved chemical species A. Determining this chemical species means determining its quantity of matter or its C_A concentration in the solution. To measure A, A is reacted with a body B contained in a solution of known concentration C_B. The dosage reaction must be rapid, complete, easily observable.

- An acid-base dosage can be followed by:
- **pH-metry:** we follow the evolution of the pH during the reaction.
- Colorimetry: we use a colored indicator

A colored indicator is a reagent whose color depends on the medium (or pH).

It can be used to mark the end of a dosage if equivalence is reached in its turning zone.

Examples of colored indicators:

Indicator	Acid / tint	pH range (turning zone)	Base / tint	
Helianthin	Red	3,1 -4,4	Yellow	
Methyl red	Red	4,08 -6,0	Yellow	
Bromothymole blue	Yellow	6,0 -7,6	Blue	
Phenol-phthalein		8,2 -10,0		
Alizarin Yellow	Yellow	10,1 -12,2	Red	

Objective:

Determine the molar concentration of an acid solution, using the colorimetric dosage. **Material:**

Graduated or volumetric pipettes (10 mL), Suction device, Burette (25 or 50 mL), Erlenmeyer flask (100 mL), beaker (x2).

Operating mode:

1. Dosage of a strong acid with a strong base

The dosage of the **hydrochloric acid** will be carried out using a **sodium hydroxide** solution (NaOH) with a molar concentration $C_B = 0.1$ mol/L in the presence of phenolphthalein.

The reaction equation is:

HCl + NaOH \longrightarrow (Na⁺_{aq}, Cl⁻_{aq}) + H₂O

Rapid dosing (determination of a framework for the equivalent volume Ve)

 \Box Check that the burette stopcock is closed.

 \Box Rinse the graduated burette with the titrant solution (NaOH) of a precise molar concentration (C_B = 0.1 mol/L), then fill it.

 \Box Adjust the liquid level to the zero level of the burette by draining the excess sodium hydroxide solution into the labeled beaker.

□ Pour approximately 40 mL of solution S1 into a labeled beaker.

□ Introduce into a 100 mL Erlenmeyer flask:

 \Box 10 mL of hydrochloric acid solution taken using a clean volumetric pipette fitted with a suction device,

 \Box 1 to 3 drops of phenolphthalein,

 $\hfill\square$ Place the Erlenmeyer flask under the burette, shake manually without using the magnetic stirre

 \Box Add the titrant solution (mL per mL) and note the color of the solution by completing table 1:

Table 1:

V sol. titrant (ml)	1	2	3	4	5	6	7	8	
Color									•••••

Req.: The solution changed color when you added the equivalent volume of titrant solution (Ve).

Indicate approximately this volume (by a frame); V1 mL < Ve < V2 mL

Precise dosage (known as "drop dosage")

Add the titrant solution until the color changes (equivalence point) while respecting the

following instructions:

- \Box quickly at the beginning, a Volume \leq V1
- \Box then drop by drop as the color change approaches (equivalence point).
- \Box Read the equivalent volume and note the color of the solution by completing table 2.
- \Box Repeat the operation two to three times

Table2:

	1 st test	2 nd test	3 rd test
Ve (ml)			
Color			

□ Deduce the average equivalence volume (Avg.Veq.)?

 \Box Calculate the concentration of the hydrochloric acid solution to be titrated S2?

 \Box Deduce the concentration of the solution S1

2. Determination of a diacid using a strong base

The dosage of sulfuric acid (H₂SO₄) will be carried out using a sodium hydroxide solution with a molar concentration $C_B = 0.1$ mol/L in the presence of phenolphthalein.

Rapid dosage (determination of a framework for the equivalent volume Ve)

-Check that the burette stopcock is closed.

- Rinse the graduated burette with the titrant solution (KOH or NaOH) of very precise molar concentration ($C_B = 0.1 \text{ mol/L}$), then fill it.

-Adjust the liquid level to the zero level of the burette by draining the excess soda (potash) solution into the beaker labeled (Recovery of used products).

- Pour approximately 50 mL of the sulfuric acid solution into a labeled beaker.

- Introduce into a 100 mL Erlenmeyer flask:

-10 mL of sulfuric acid solution taken using a clean volumetric pipette fitted with a propipette,

-3 drops of phenolphthalein,

- Place the Erlenmeyer flask under the burette. Stir the solution manually without using the magnetic stirrer.

- Add the titrant solution (mL per mL) and note the color of the solution by completing

table 3.

Table 3:

V sol. titrant (ml)	1	2	3	4	5	6	7	8	•••••
Color									•••••

Req.: The solution changed color when you added the equivalent volume of titrant solution (Ve).

Indicate approximately this volume (by a frame); V1 mL < Ve < V2 mL

Precise dosage (known as "drop dosage")

Add the titrant solution until the color changes (equivalence point) while respecting the

following instructions:

- \Box quickly at the beginning, a Volume \leq V1
- \Box then drop by drop as the color change approaches (equivalence point).
- \Box Read the equivalent volume and note the color of the solution by completing table 4.
- \Box Repeat the operation two to three times

Table 4:

	1 st test	2 nd test	3 rd test
Ve (ml)			
Color			

□ Deduce the average equivalence volume (Avg.Veq.)?

□ Calculate the concentration of the sulfuric acid solution to be titrated?

 \Box What is the difference between first dosage and second dosage?

V. Questions:

1. Are there any spectator chemical species in both dosages? Which ones?

2. What are the acid/base pairs involved in each dosage?

- 3. Write the associated proton half-equations in the two dosages?
- 4. Derive the equation for the reaction of the dosage in both cases?
- 5. Give the definition of dosage equivalence? Deduce a relationship between the quantities of matter of oxonium ions (H_3O^+) (n_A) and hydroxide ions (OH^-) (n_B) ?

6. List the chemical species present in the dosing beaker:

-for a volume poured less than V^{B}_{e} ?

- for a poured volume equal to V^{B} e. What should the pH be at equivalence?

-for a poured volume greater than V^{B}_{e} ?