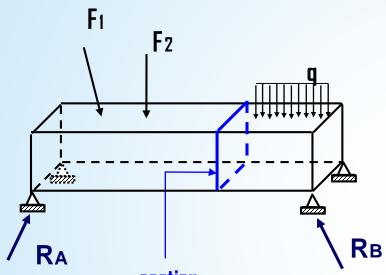
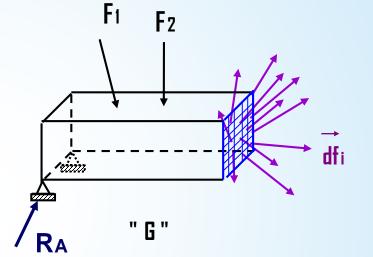
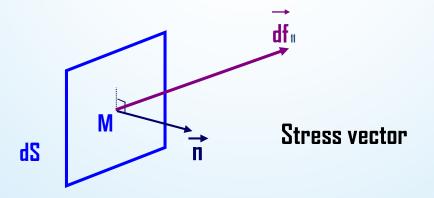
Chapter 2 Stresses and strains

I - CONCEPTS OF STRESSES

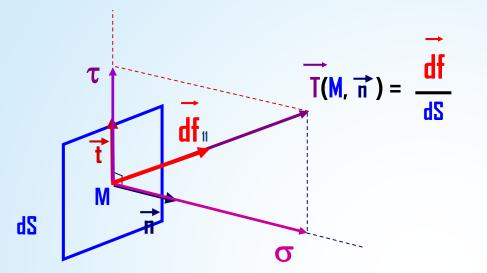




section



2- Normal stress and tangential stress

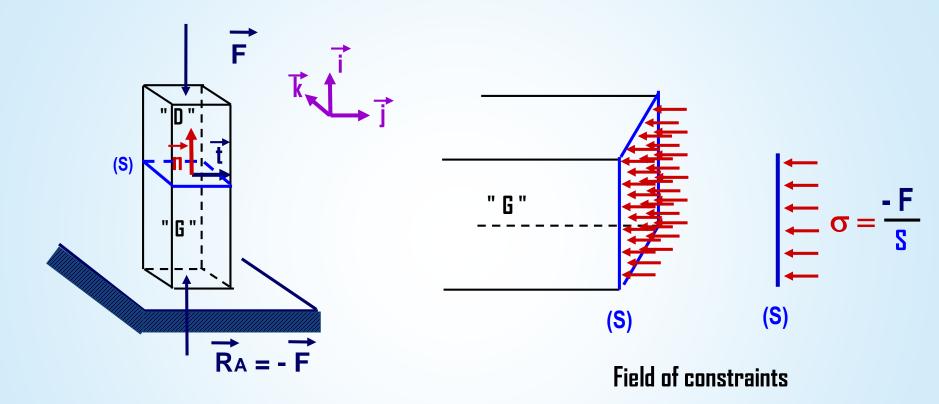


 $T(M,\vec{n}) = \sigma.\vec{n} + \tau.\vec{t}$

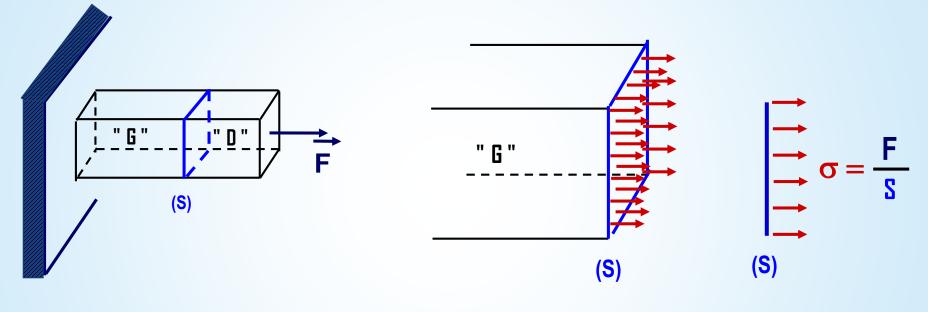
- The unit of stress is the ratio of a force to a unit area (N/mm2 = MPa).

3- The different types of constraints (Stresses)

a) Compressive stress

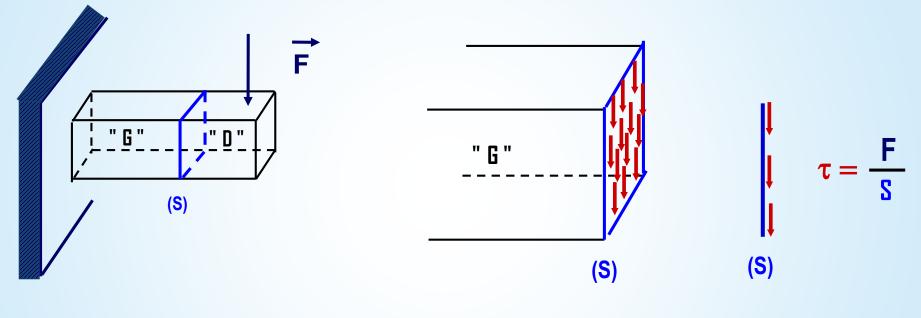


b) <u>Tensile stress</u>



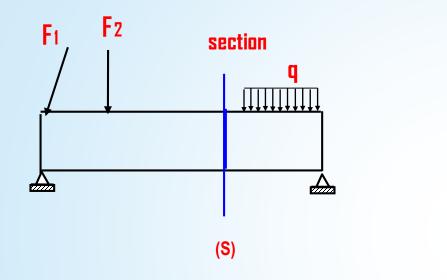
Field of constraints

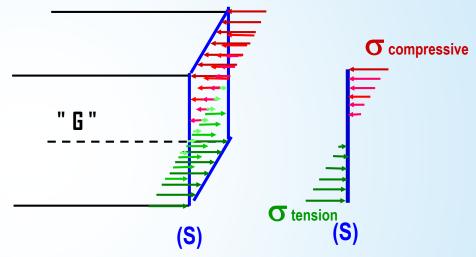
c) <u>Shear stress</u> :

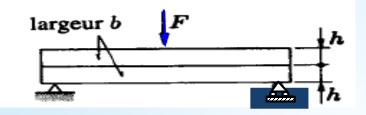


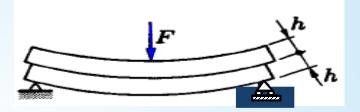
Field of constraints

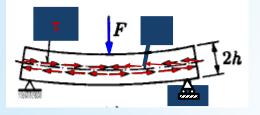
d) <u>Bending stresses</u> :











: Appearance of tangential stresses at the level of fibre contact

Demonstration of shear stresses

What is the purpose of stress calculations?

We must check that the stresses generated by external loads do not exceed the permissible stress limit for the material.

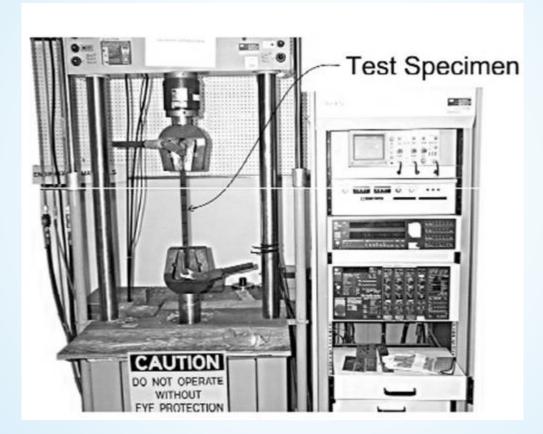
$$\sigma = \frac{F}{S} \le \sigma_{ad}$$

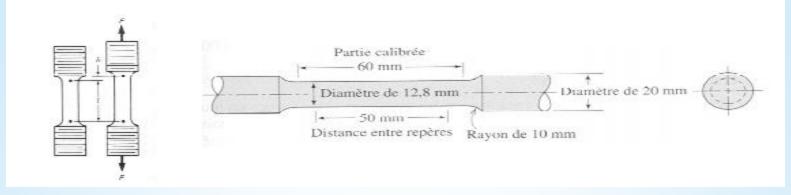
 σ_{ad} : stress above which the piece is subject to deterioration of its mechanical and dimensional characteristics, or even failure.

$$\sigma_{ad}$$
 is experimentally determined

MECHANICAL PROPERTIES OF MATERIALS

<u>1- Tensile test</u>

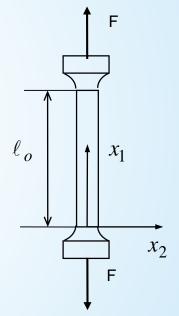




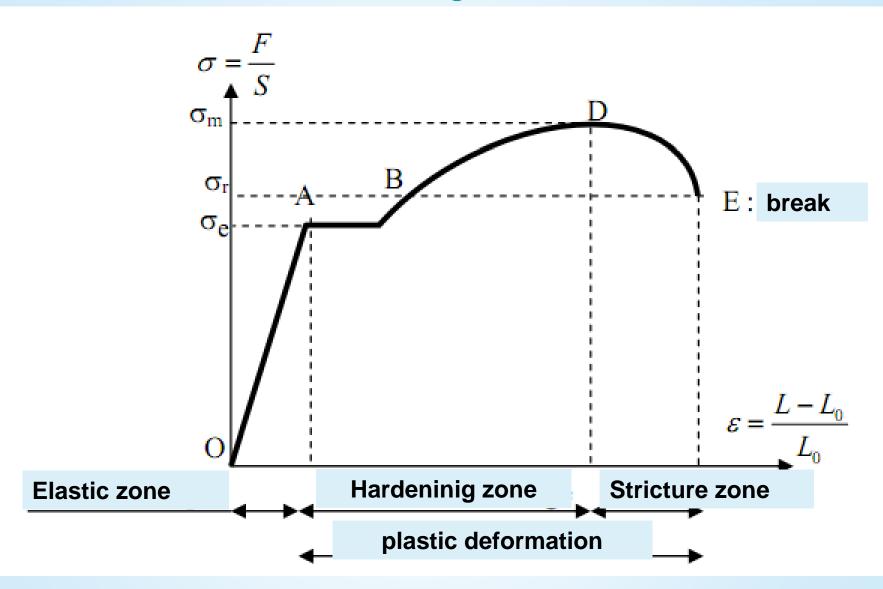
The specimen is subjected to an increasing force F, the relative elongation $\Delta \ell$ is measured and the test is continued until failure.

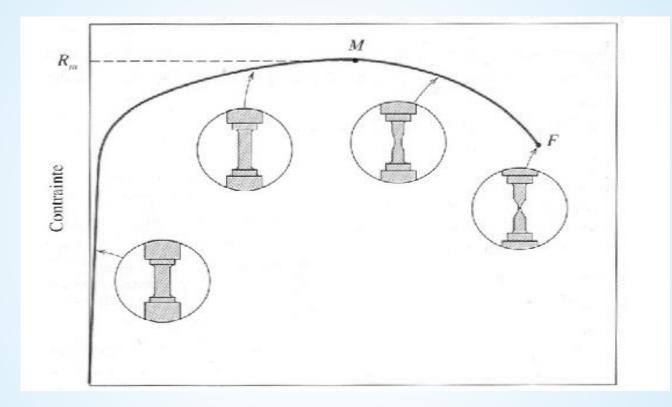
The state of stresses and strains :

$$\sigma_1 = \frac{F}{S} \qquad \qquad \varepsilon_1 = \frac{\Delta \ell}{\ell_o}$$



Strain-stress diagram for steel



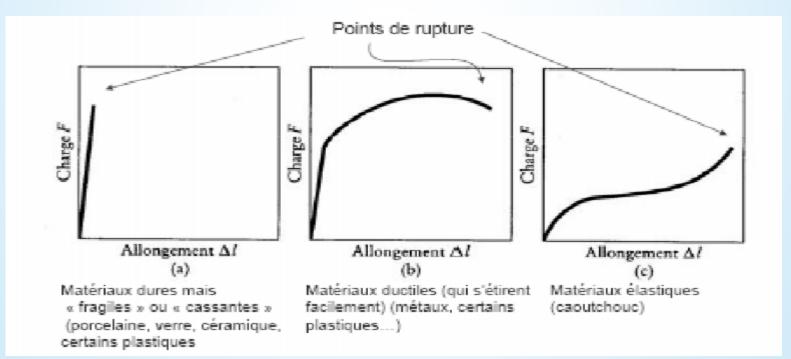


Stress-strain diagram for aluminium

2- Ductile and fragile materials

-The behaviour of steel can be described in a stress-strain diagram composed of two phases: elastic behaviour + plastic behavior

- **Ductile behavior**
- For glass, once the elastic limit is exceeded, breakage occurs:
 Fragile behaviour



Stress-strain diagram for fragile, ductile and elastic materials

3- Admissible stress - Concept of safety factor

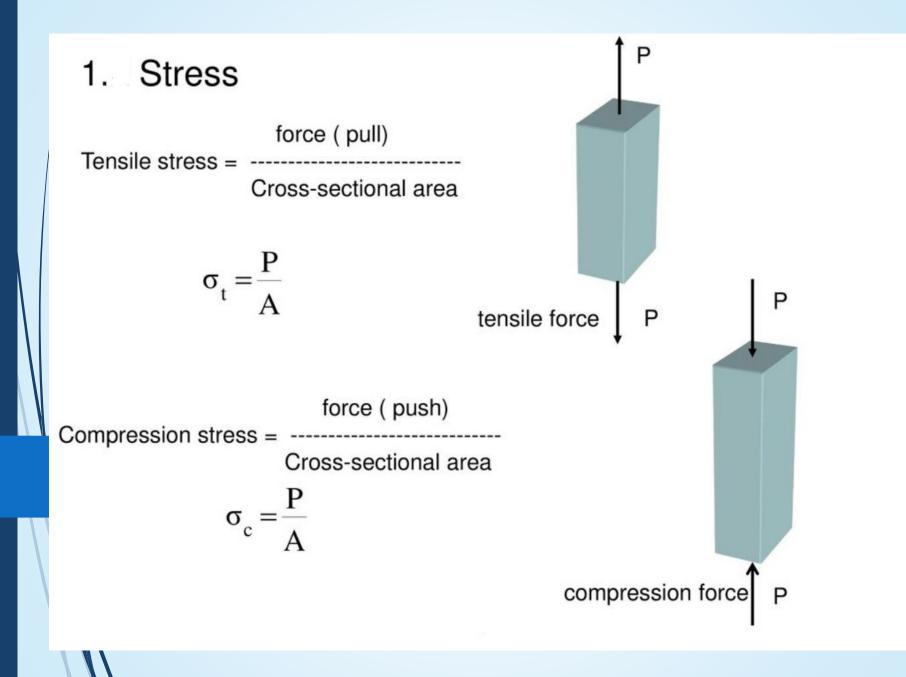
$$\sigma = \frac{F}{S} \le \sigma_{ad} = \frac{\sigma_e}{f_s}$$

 σ_{ad} : stress above which the component suffers deterioration of its mechanical and dimensional characteristics, or even breakage

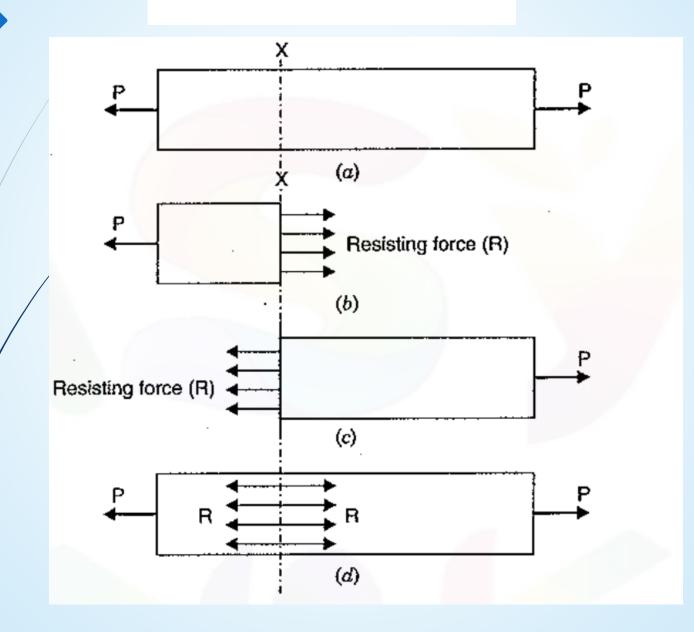
- σ_e is determined experimentally.

For safety reasons, the stress must remain below an admissible limit stress.

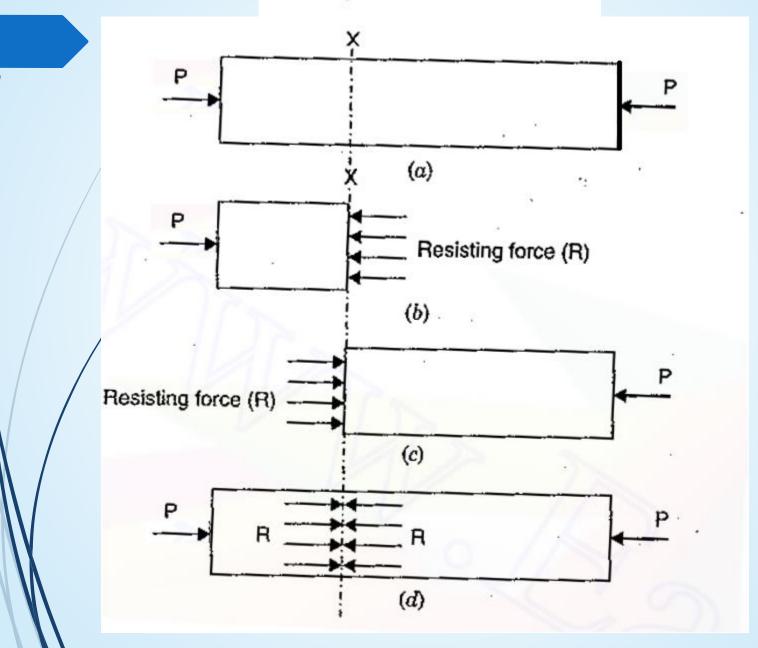
$$\sigma_e$$
 : elastic limit
 f_s : safety factor.
Exple: f_s =1,5 (concrete) ; f_s =1,15 (steel)

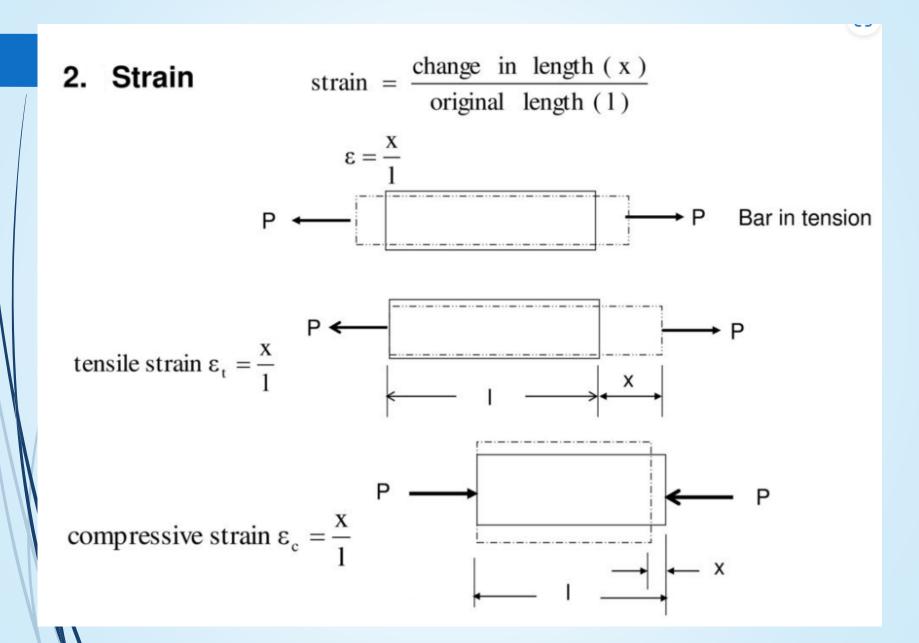


Tensile stress

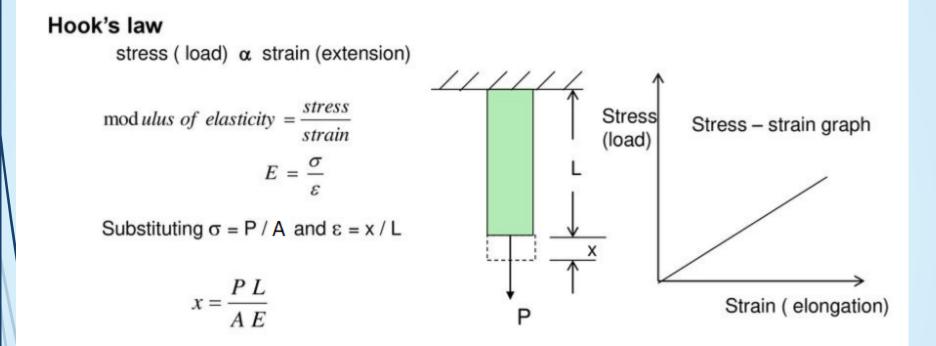


Compression stress





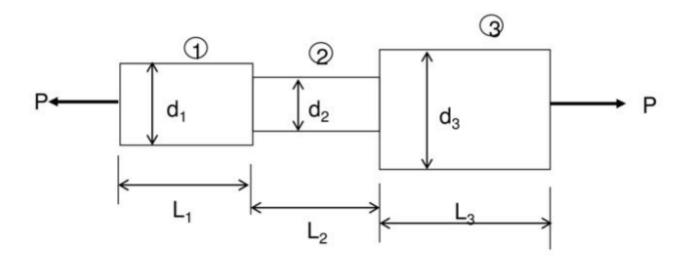
3. Hook's law, Principal of superposition



Principal of superposition

The effect of a system of forces acting on a body is equal to the sum of the effects these same forces applied.

4. Varying cross-section and loads



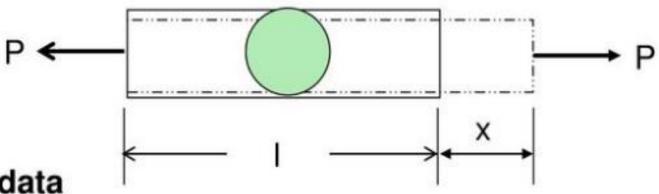
Loads $P = P_1 = P_2 = P_3$ $P = \sigma_1 A_1 = \sigma_2 A_2 = \sigma_3 A_3$

The changes in length

$$\begin{aligned} x_1 &= \varepsilon_1 \ L_1 \ , \ x_2 &= \varepsilon_2 \ L_2 \ , \ x_3 &= \varepsilon_3 \ L_3 \\ x_1 &= \frac{P \ L_1}{A_1 \ E} \ , \ x_2 &= \frac{P \ L_2}{A_2 \ E} \ , \ x_3 &= \frac{P \ L_3}{A_3 \ E} \end{aligned}$$

The total changes of length = $x_1 + x_2 + x_3$

Example 1



Given data

Tensile load P = 15,000 NSteel rod diameter, d = 2 cm

To find

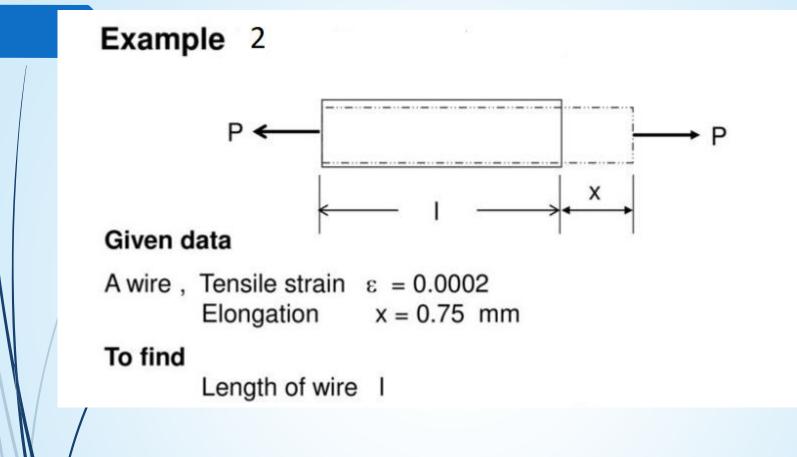
stress

Calculation

$$\sigma_{t} = \frac{P}{A}$$

$$\sigma_{t} = \frac{15000}{(\pi/4) \times 2^{2}}$$

$$= 4777 \quad \text{N/cm}^{2}$$



Calculation

$$\varepsilon = + \frac{X}{1}$$

+ 0.0002 = $+ \frac{0.75 \text{ mm}}{1}$
1 = 3750 mm
ength of wire = 3.75 m

Exercise 1:

A steel bar with a 10 mm square crosssection is subjected to a tensile force of 10 kN. Knowing that the modulus of elasticity of steel is 200 GPa, calculate the deformation of the bar.

Solution exercise 1

- The cross-sectional area of the bar is $A = 10 \times 10 = 100 \text{ mm}^2 = 0.0001 \text{ m}^2$.
- The force applied is F = 10 kN = 10000 N.
- The modulus of elasticity of the steel is E = 200 GPa = 200 x 10° Pa.
- The deformation of the bar is given by the following formula:
- ε = F / (A x E)
- $\epsilon = 10,000 / (0.0001 \times 200 \times 10^{9}) = 0.0005$
- The deformation of the bar is therefore 0.0005.

Exercise 2:

A steel beam of 3 meters long and 20 mm square, is subjected to a compression force of 50 kN. Knowing that the modulus of elasticity of steel is 200 GPa, calculate the elongation of the bar.

Solution exercise 2

The beam cross-section is $A = 20 \times 20 = 400 \text{ mm}^2$

The applied force is F = 50 kN = 50,000 N.

The modulus of elasticity of the steel is E = 200 GPa = 200 000 MPa. The initial length of the beam is L = 3 m.

The deformation of the beam is given by the following formula:

 $\epsilon = F / (A \times E)$ $\epsilon = 50\ 000 / (400 \times 200\ 000) = 0.000625$

The deformation of the beam is therefore 0.000625.

The change in beam length is then given by the formula:

 $\Delta L = \varepsilon \times L$

 $\Delta L = 0.00625 \times 3 = 0.001875 \text{ m}$

The change in beam length is therefore 0.001875 m.

Exercise 3:

A steel bar of 2 meters long and 15 mm square is subjected to a tensile force of 80 kN. Knowing that the modulus of elasticity of steel is 200 GPa, calculate the elongation of the bar.

Solution exercise 3

The cross-sectional area of the bar is $A = 15 \times 15 = 225 \text{ mm}^2$

The force applied is F = 80 kN = 80,000 N.

The modulus of elasticity of the steel is E = 200 GPa = 200 000 MPa. The initial length of the bar is L = 2 m.

The elongation of the bar is given by the following formula: $\Delta L = (F \times L) / (A \times E)$ $\Delta L = (80,000 \times 2000) / (225 \times 200\ 000) = 3,555\ mm$

The elongation of the bar is therefore 3,55 mm.