CHAPTER 2

DIMENSIONING IN SIMPLE BENDING

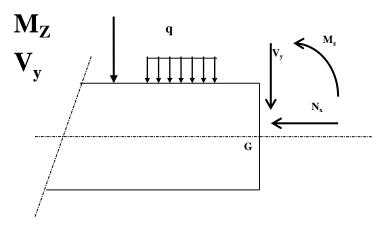
Justifications for normal loads

1) Definition

A medium-plane beam is subject to simple plane bending if the loads are reduced to :F

- A bending moment :
- And a shear force :
- 2) Justifications

In reinforced concrete, a distinction is made between :



- The action of the bending moment which leads to the dimensioning of the longitudinal reinforcements.
- The action of the shear force, which concerns the design of the transverse reinforcement.
- These two calculations are carried out separately and in this section we will limited to the bending moment calculations.

3) Beam spans

In reinforced concrete, the span of the beams to be taken into account is :

- The span between support centres when there are support devices or when the beam rests on masonry walls,
- > The span between bare supports when the supports are in reinforced concrete (principal beam, column or wall).

Justifications for bending moment

Three limit states are to be considered for the justification of

deflected beams:

- ✓ Ultimate resistance limit state
- ✓ Service limit state with regards to durability
- ✓ Service limit state with regards to deformation

I. Ultimate Limit State of Resistance

We need to check that:

$M_u \leq M_{ur}$

Where:

M_u : is the applied moment (design moment)

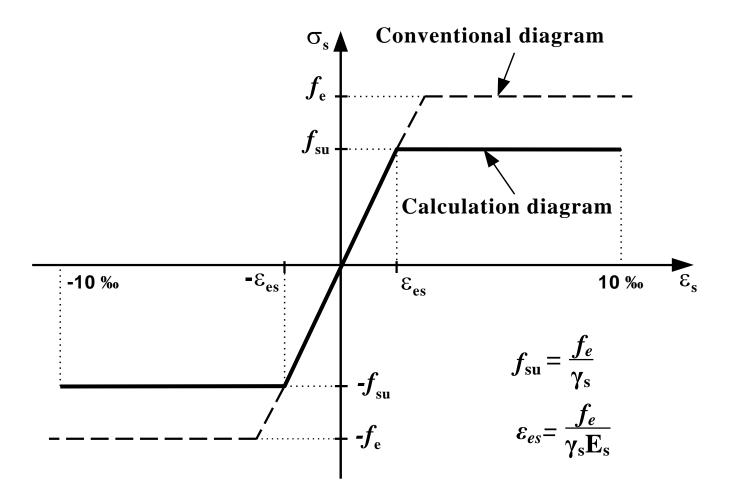
and M_{ur} : is the resisting moment of the section

1) Calculation hypotheses

The main assumptions for the ULS (ELU) design of the RC sections subjected to simple bending are as follows:

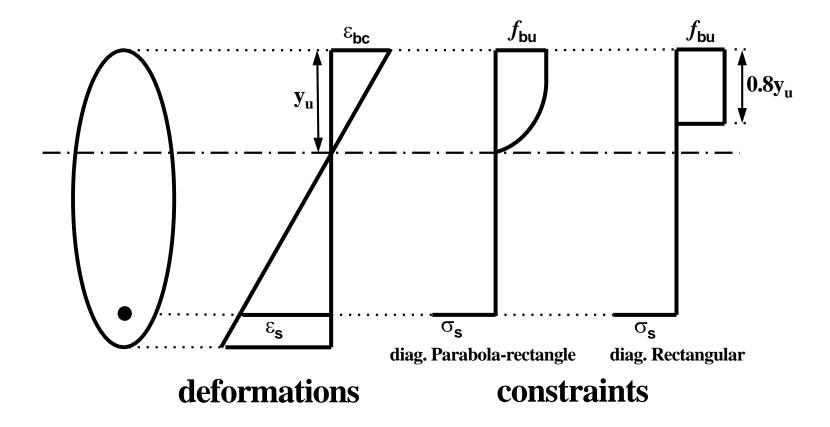
- > Straight sections remain flat after deformation (Navier-Bernoulli hypothesis),
- > There is no relative sliding between the reinforcement and the concrete, and the

tension in the concrete is neglected,



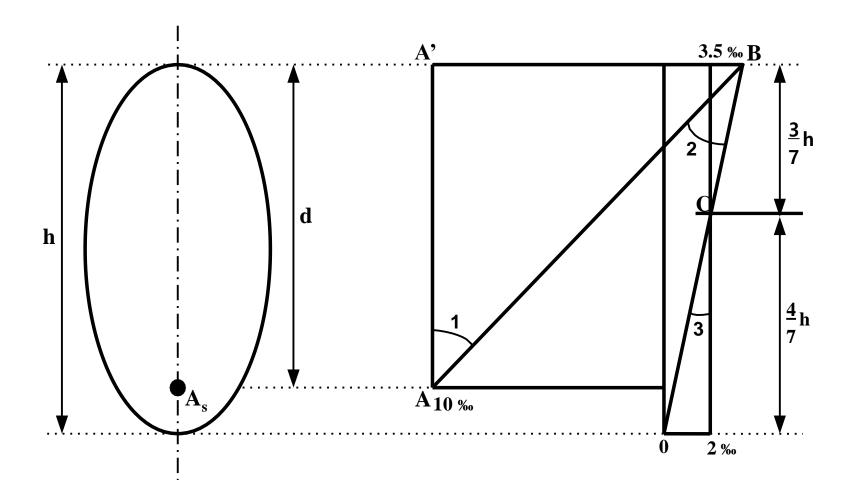
Stress-strain diagram for steel calculations

f) for concrete >> simplified rectangular diagram (Article A.4.3,42).

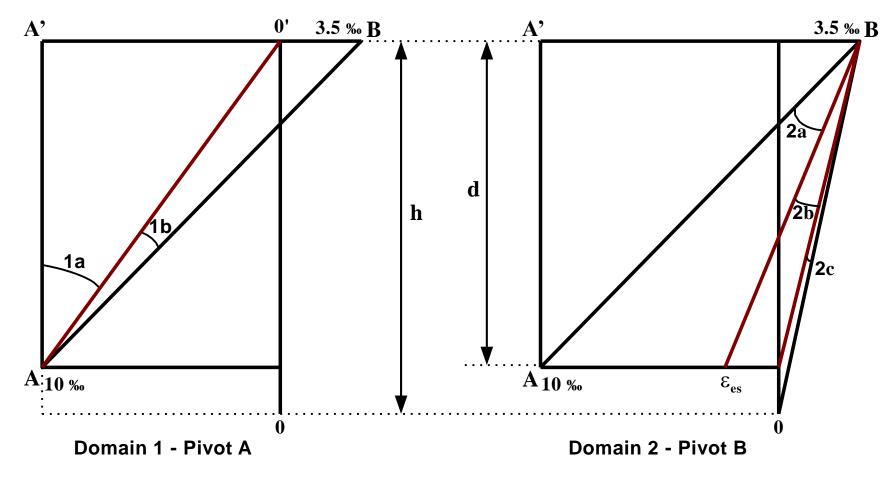


g) $\epsilon_{\rm b} \leq 3.5\%$ in flexion et 2‰ in simple compression $\epsilon_{\rm s} \leq 10\%$

The deformation diagram of the section at E.L.U.R (Article A.4.3.3) therefore passes through one of the 3 pivots A, B or C defined below:

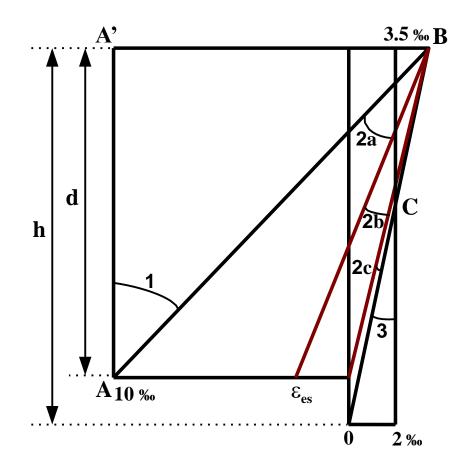


2) Possible deformation lines for simple bending



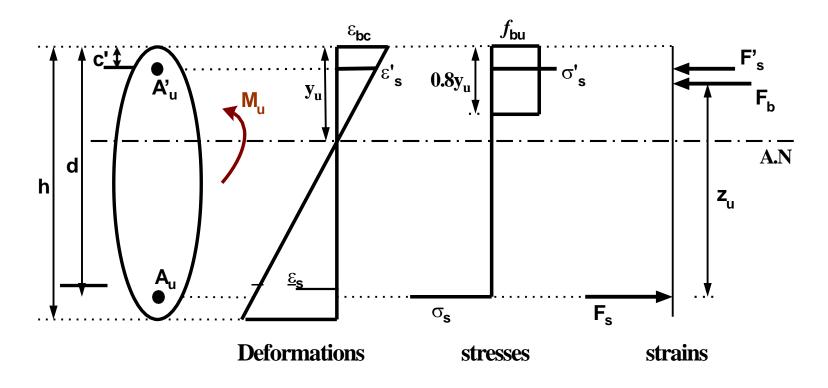
Let y_u be the depth of the neutral axis,

 $\alpha_u = y_u/d$ is the relative depth of the neutral axis Determine the bounds of α_u for each domain.



domain 1 :	$\alpha_{\rm u} \leq 0.259$
domain 2a :	$0.259 < \alpha_u \leq \alpha_\ell$
with $\alpha_{\ell} =$	$=$ 3.5 / (3.5 + 1000 ϵ_{es})
domain 2b :	$\alpha_{\ell} < \alpha_{u} \leq 1$
domain 2c :	$1 < \alpha_u \leq \alpha_{BC} = h/d$
domain 3 :	$h/d < \alpha_u$

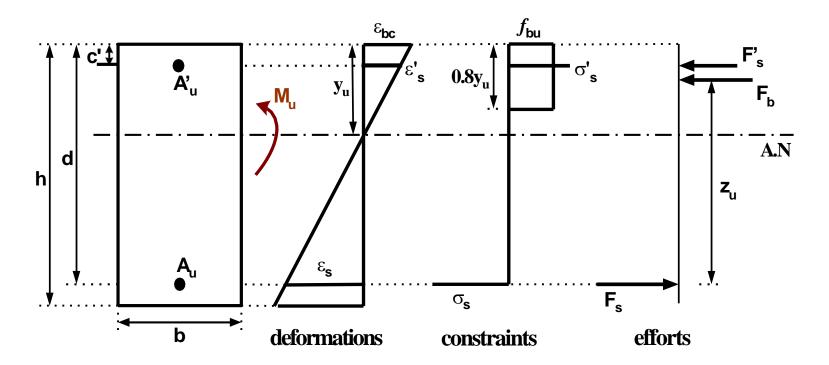
3) Notations - Equilibrium equations



The equilibrium of the section results in the following two equations:

- > Equilibrium of normal forces : $F_b + F'_s F_s = 0$
- Equilibrium of moments in relation to the centre of gravity of the tensioned steel : $F_b z_u + F'_s (d - c') = M_u$

4) Case of rectangular sections



In this case we have :

$$F_{b} = 0.8 b y_{u} f_{bu}$$

$$F_{s} = A_{u} \cdot \sigma_{s}$$

$$F'_{s} = A'_{u} \cdot \sigma'_{s}$$

$$z_{u} = d - 0.4 y_{u}$$

Moment résistant béton :

$$M_{b} = \mathbf{F}_{b} \mathbf{z}_{u} = \mathbf{0.8} \ b \ y_{u} f_{bu} \ (d - \mathbf{0.4} \ y_{u} \)$$

= $\mathbf{0.8} \ b. \ y_{u} / \mathbf{d} \ .f_{bu} \ .\mathbf{d}^{2} (\mathbf{1} - \mathbf{0.4} \ y_{u} / \mathbf{d})$
= $\mathbf{0.8} \alpha_{u} \ (\mathbf{1} - \mathbf{0.4} \alpha_{u}) \ \mathbf{bd}^{2} \ .f_{bu} \qquad avec \qquad \alpha_{u} = y_{u} / \mathbf{d}$

We can write: $M_b = \mu_u \operatorname{bd}^2 f_{bu}$ with $\mu_u = 0.8\alpha_u (1 - 0.4\alpha_u)$ et $\alpha_u = y_u / d$

- μ_u is called the relative moment of the concrete or 'reduced ultimate moment'.
- α_u is the relative depth of the neutral axis
- > Equilibrium equations : $0.8 \ a_u \ bdf_{bu} + A'_u \ \sigma'_s - A_u \ \sigma_s = 0$ $\mu_u \ bd^2 f_{bu} + A'_u \ \sigma'_s \ (d - c') = M_u$

What are the unknowns in this system of equations?

if the deformation diagram is known, the parameters y_u , ε_{bc} , ε_s , ε'_s , σ_s et σ'_s are known.

In fact : The deformation diagram gives: $\frac{\overline{y_u}}{y_u} = \frac{\overline{d} - \overline{y_u}}{\overline{d} - \overline{y_u}} = \frac{\overline{d} - \overline{d}}{\overline{y_u} - \overline{d}}$ if the deformation line passes through the pivot A we have : $\varepsilon_s = 10 \%_0; \quad \varepsilon_{bc} = \frac{y_u}{d - y_u} = \frac{10\%_0}{d - y_u} = \frac{y_u - c'}{d - y_u} = \frac{10\%_0}{d - y_u}$ $\frac{\varepsilon_{bc}}{y_u} \frac{\varepsilon_s}{d-y_u} = \frac{\varepsilon_s}{y_u-c'}$ d and if the deformation line passes through the pivot B we have : $a_{x} = 35\%$; $\epsilon_{s} = \frac{d - y_{u}}{v_{u}} 35\%$ et $\epsilon'_{s} = \frac{y_{u} - c'}{v_{u}} 35\%$

Once the deformations are known, the corresponding stresses can be deduced.

Now let's assume that the dimensions of the section of concrete (b,h)are known

and take approximate values for d and c' to be d=0.9het c'=d/9

This leaves a number of unknowns:

the y_u position of the deformation diagram
 and reinforcement sections A_u, A'_u

<u>RO</u>

As the steel reinforcement is primarily intended to absorb the tensile stress, we will first assume that : $A'_u = 0$

a) Section without compressed reinforcement

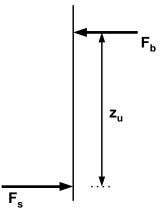
if $A'_{u} = 0$ the equilibrium of the moments gives:

$$\mu_u = \frac{M_u}{\mathbf{b}\mathbf{d}^2 f_{bu}} \qquad (\mathbf{F}_{\mathbf{b}} \mathbf{z}_{\mathbf{u}} = \mathbf{M}_{\mathbf{u}})$$

or $\mu_u = 0.8 \alpha_u (1 - 0.4 \alpha_u)$

So α_u is the lower race of the equation:

0.4
$$\alpha_{\rm u}^2 - \alpha_{\rm u} + 1.25 \mu_u = 0$$



soit $\alpha_u = \frac{1 - \sqrt{1 - 2 \mu_u}}{0.8} = 1.25(1 - \sqrt{1 - 2 \mu_u})$

Writing the equilibrium of the moments with respect to the point of application of F_b , we obtain :

$$M_u = \mathbf{F}_{\mathbf{s}} \, \mathbf{z}_{\mathbf{u}} = A_u \, \boldsymbol{\sigma}_{\mathbf{s}} \, \mathbf{z}_{\mathbf{u}}$$

Resulting :

$$A_{u} = \frac{M_{u}}{\sigma_{s} z_{u}} \text{ avec } z_{u} = d(1 - 0.4\alpha_{u}) \text{ et } \alpha_{u} = 1.25(1 - \sqrt{1 - 2\mu_{u}})$$

b) Position of the deformation diagram

To place the deformation diagram within the domain possible, possible, we compare the reduced moment of calculation μ_u

 $\mu_u = \frac{M_u}{\mathrm{bd}^2 f_{bu}}$

with the reduced moments corresponding to the limits of the different domains.

