
CHAPTER 2

DIMENSIONING IN SIMPLE BENDING

J u s t i f i c a t i o n s  f o r  n o r m a l  

l o a d s



1) Definition

– A bending moment : MZ

– VyAnd a shear force     :

2) Justifications

In reinforced concrete, a distinction is 

made between :

A medium-plane beam is subject to simple plane bending if the loads are reduced to :F

 The action of the bending moment which leads to the dimensioning of the 

longitudinal reinforcements.

 The action of the shear force, which concerns the design of the transverse 

reinforcement.

 These two calculations are carried out separately and in this section we will limited 

to the bending moment calculations.
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3) Beam spans

In reinforced concrete, the span of the beams to be taken into account is :

 The span between support centres when there are support devices or

when the beam rests on masonry walls,

 The span between bare supports when the supports are in reinforced

concrete ( principal beam, column or wall).



Three limit states are to be considered for the justification of 

deflected beams:

 Ultimate resistance limit state

 Service limit state with regards to durability

 Service limit state with regards to deformation

Justifications for bending moment



I. Ultimate Limit State of Resistance

We need to check that:

Mu ≤ Mur

Where: 

Mu : is the applied moment (design moment) 

and Mur : is the resisting moment of the section



The main assumptions for the ULS (ELU) design of the RC sections subjected to 

simple bending are as follows:

 Straight sections remain flat after deformation (Navier-Bernoulli hypothesis),

 There is no relative sliding between the reinforcement and the concrete, and the 

tension in the concrete is neglected,

1) Calculation hypotheses



Stress-strain diagram for steel calculations
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f) for concrete simplified rectangular diagram (Article A.4.3,42).
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g) b≤ 3.5‰ in flexion et 2‰ in simple compression
s ≤ 10‰

The deformation diagram of the section at E.L.U.R (Article A.4.3.3) therefore passes 

through one of the 3 pivots A, B or C defined below:
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2) Possible deformation lines for simple bending

Let yu be the depth of the neutral axis,

αu = yu/d is the relative depth of the neutral axis
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domain 1 :  

domain 2a :

αu ≤ 0.259

0.259 < αu ≤ α ℓ

with α ℓ = 3.5 / (3.5 + 1000 es)

domain 2b :

domain 2c :

domain 3 :

α ℓ < αu ≤ 1

1 < αu ≤ α BC=h/d 

h/d < αu



3) Notations - Equilibrium equations

Deformations stresses                        strains

The equilibrium of the section results in the following two equations:

 Equilibrium of normal forces : Fb + F's – Fs = 0

 Equilibrium of moments in relation to the centre of gravity of the tensioned steel :

Fb zu + F's (d – c') = Mu
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4) Case of rectangular sections

In this case we have :

Fb = 0.8 b yu

Fs = Au.σs

F's = A'u.σ's

fbu

zu = d – 0.4 yu
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 Moment résistant béton :

Mb = Fb zu = 0.8 b yu fbu (d – 0.4 yu )

= 0.8 b. yu/d . fbu .d²(1 – 0.4 yu/d)

= 0.8αu (1 - 0.4αu) bd² . fbu avec αu= yu /d

We can write:          

with

Mb = μu bd2 fbu

μu = 0.8αu (1 - 0.4αu) et αu= yu /d

• μu is called the relative moment of the concrete or ‘reduced ultimate moment’.

• αu is the relative depth of the neutral axis

 Equilibrium equations :

0.8 αu bd fbu + A'u σ's – Au σs = 0

μu bd2 fbu + A'u σ's (d – c') = Mu

What are the unknowns in this system of equations?



if the deformation diagram is known, the parameters yu, bc, s, ’s, σs et σ’
s are known.

In fact :

Once the deformations are known, the corresponding stresses can be deduced.
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Now let's assume that the dimensions of the section of
concrete (b,h)are known

and take approximate values for d and c' to be

d=0.9het c’=d/9

This leaves a number of unknowns:

- the yu position of the deformation diagram

and reinforcement sections Au, A’u

RQ

As the steel reinforcement is primarily intended to absorb

the tensile stress, we will first assume that : A’u= 0



a) Section without compressed reinforcement

if A'u = 0 the equilibrium of the moments gives:

( Fbzu = Mu)

or μu = 0.8 αu (1 – 0.4 αu)

So αu is the lower race of the equation:

0.4 αu
2– αu +1.25 μu=0

soit

Writing the equilibrium of the moments with respect to the point of 

application of Fb, we obtain :

Mu = Fs zu = Au σs zu
Resulting :
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b) Position of the deformation diagram

• domain 1

• domain 2a

• domain 2b

• domain 2c

• domain 3

μu ≤ 0.186

0.186 < μu ≤ μℓ 

μℓ < μu ≤ 0.48

0.48 < μu ≤ μBC

μBC < μu

αu ≤ αAB=0.259

0.259 < αu ≤ αℓ 

αℓ < αu ≤ 1

1 < αu ≤ αBC=h/d

αBC< αu

To place the deformation diagram within 
the domain
possible, possible, we compare the reduced 

moment of calculation μu

with the reduced moments corresponding 
to the limits of the different domains.
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