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Preface

This book, entitled “Numerical methods for engineers: Lecture notes and exercises”, is

an introduction to the different numerical methods usually used to solve problems related to

ordinary differential equations. Prior knowledge of single-variable calculus is highly required

to better understand its content. The mastery of at least one programming language, like

MATLAB, is recommanded to apply numerical methods on different examples easily and quickly.

Since this manuscript is addressed to engineers, it ignores some details of numerical theory

like the proofs of theoretical results. However, it focuses on numerical formulas and different

approximations that may be used. The content of this book goes from easy to more complicated

techniques, all by explaining where they come from, and why they are used. We also emphasize

how each formula works, what is the error obtained from its application and how to reduce this

error according to our goals. In the end, the reader can choose the most convenient technique

related to his purposes and his data.

For the best of the reader knowledge, each chapter of these notes contains many examples,

some times figures also, and ends with a list of exercises with hints of them resolutions.

In the end of this book, the reader must be able to:

– Know and define the different numerical methods studied.

– Apply all the numerical methods explained (or not) in this book.

– Distinguish the differences between the numerical methods studied in the same chapter.

– List the advantages and disadvantages of each numerical method.

– Choose the number of subdivisions necessary to reduce and/or fix the error.

At the end of this course, the learner will be able to choose the most suitable numerical method

in relation to his objective as well as the most practical step or number of iterations to reach

the desired error.
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Chapter 1
Solving nonlinear equations f (x) = 0

In this chapter, we learn how to find numerically the roots to equations of type f(x) = 0. Of

course, we suppose that our goal can not be achieved analytically. Moreover, we should keep in

mind that numerical methods in this chapter do not give the exact solutions but only approach

it as much as needed.

1.1 Preliminary

Definition 1.1. A function f defined on its domain of definition Df is said to be linear if:

∀(x, y) ∈ D2
f , ∀λ ∈ R, f(λx+ y) = λf(x) + f(y). (1.1)

Example 1.1. The integral is a linear function.

Definition 1.2. A function which do not satisfy condition (1.1) is called nonlinear.

Example 1.2. The functions f(x) = ex + 1, f(x) = sin(x) + cos(x), f(x) = x4 + 13x− 2,... are

nonlinear.

Definition 1.3. An equation of type f(x) = 0 with f a nonlinear function is called a nonlinear

equation.

Important 1. Before solving a nonlinear equation, we should make sure that its solution (root)

exists! Noting that xr is said to be a solution (root) to equation f(x) = 0 if f(xr) = 0. From a

geometric point of view, xr is the intersection of the graph of f(x) and the absissa axe y = 0.

Theorem 1.1. Let f be a continuous function on [a, b] and let f(a)f(b) < 0. Then, there exists

at least a root xr ∈ [a, b] to f(xr) = 0.

Remark 1.1.
– If f(a)f(b) > 0, then f(x) = 0 may have no solution, one solution or more than one

solution in [a, b], see Figure 1.1.

– If f(a)f(b) < 0, then f(x) = 0 may have one solution or more than one solution in [a, b],

see Figure 1.2.



2 1. Solving nonlinear equations f(x) = 0

Figure 1.1: First case f(a)f(b) > 0

Figure 1.2: Second case f(a)f(b) < 0

To apply numerical methods, we should make sure that f(x) has exactly one solution in

[a, b]. Hence, we should take small interval [a, b] (as small as possible) in which we:

Theorem 1.2. Let f be a continuous function on [a, b] and let f(a)f(b) < 0. Suppose that f

is strictly monotonic on [a, b]. Then, there exists a unique root xr ∈ [a, b] to f(x) = 0.

Recall 1.1. If f is derivable with f ′(x) < 0 or f ′(x) > 0 on [a, b], then f is strictly monotonic

on [a, b].

Exercise 1.1. Separate (locate) the roots of f(x) = x4 + 4x+ 2 = 0.

Solution 1.1. Separate the roots of an equation means propose small intervals such that inside

each interval of them we find exactly one solution. The most common way to do it is “the

variation table”.

Here we have f(x) = x4 + 4x + 2 = 0. Then f ′(x) = 4x3 + 4. f ′(x) = 0 implies x = −1.

Hence

x −∞ −1 +∞

f ′(x) − 0 +

f(x) +∞�−1�+∞

c©MOKKEDEM F.Z.



1.2 Bisection method 3

From the previous table of variation, there exists x1 ∈] − ∞,−1[ a solution to f(x) = 0 and

there exists x2 ∈] − 1,+∞[ another solution to f(x) = 0. This separates the two solutions of

this equation. However, the proposed intervals are so long. We can reduce the lengh of them

by choosing arbitrary values of x and verifying the sign of f(x). For example, for x = −2, we

have f(−2) > 0. This together with the fact that f(−1) = −1 < 0 implies that the first root

x1 ∈]− 2,−1[. Observe that ]− 2,−1[ is smaller (then better) than ]−∞, 0[. Similarly, we may

take x2 ∈]− 1, 0[ instead of ]− 1,+∞[.

In the sequel, we suppose that f is continuous on [a, b] and that a unique solution xr to

f(x) = 0 exists in [a, b]. We also suppose that we can not find the value of xr analytically (by

hand). Hence we approach it using numerical methods, also called iterative methods.

1.2 Bisection method

1.2.1 Algorithm

This method is based on the fact that f(a)f(b) < 0. It starts by dividing [a, b] on two

subintervals [a, x1] and [x1, b] with x1 = a+b
2 is the center of [a, b].

The sign of f(a)f(x1) determines in which subinterval the x−root exists:

– If f(a)f(x1) = 0, then f(x1) = 0. Hence x1 is exactly the desired x−root.

– If f(a)f(x1) < 0, then x−root belongs to [a, x1] instead of [a, b].

– If f(a)f(x1) > 0, then x−root belongs to [x1, b] instead of [a, b].

Once we detremine the right subinterval containing the x−root, we repeat the procedure by

looking for x2, its center, and so on.

Example 1.3. Apply bisection method to approach the solution of equation f(x) = xex−1 = 0

on [0, 1] with tolerance of 10−3.

Solution 1.2. Firstly, we see that f(x) is continuous on [0, 1]. Also f(0) < 0 and f(1) > 0 which

implies f(0)f(1) < 0. Moreover f ′(x) = (x+ 1)ex > 0 on [0, 1], hence f is strictly increasing on

[0, 1]. Regarding the above three arguments, there exists a unique x−root to f(x) = 0 in [0, 1].

1st iteration: x1 = 0+1
2 = 0.5 and f(x1) = −0.17563.

Hence f(0)f(0.5) > 0. Then x−root belongs to [0.5, 1].

2nd iteration: x2 = 0.5+1
2 = 0.75 and f(x2) = 0.58775.

Hence f(0.5)f(0.75) < 0. Then x−root belongs to [0.5, 0.75].

3rd iteration: x3 = 0.5+0.75
2 = 0.625 and f(x3) = 0.16765.

Hence f(0.5)f(0.625) < 0. Then x−root belongs to [0.5, 0.625].
...
13th iteration: x13 = 0.567260741 and f(x13) = 0.000324573.

c©MOKKEDEM F.Z.



4 1. Solving nonlinear equations f(x) = 0
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Figure 1.3: Graph of f(x) = xex − 1 on [0, 1] (Example 1.3)

Observe that after 13th iteration, there exist three zeros after the comma in f(x13). Here we say

that we have approached the solution with three exact decimals or that the approximate error

is less than 10−3.

If we need more exactitude, we should do more iterations !

1.2.2 Error and order of convergence

– At each iteration k, we can define the distance between the exact root xr and the approximate

value xk by the error at iteration k, we note:

Ek = |xr − xk|.

– Since each interval is the half of its previous one, we can prove that

Ek ≤
b− a
2k+1 .

– If we need a tolerance of 10−p, then we should suppose that

Ek ≤
b− a
2k+1 ≤ 10−p.

c©MOKKEDEM F.Z.



1.3 Fixed point method 5

This will cost us

tolerance of 10−p =⇒ k ≥ ln(10p(b− a))
ln(2) iteration. (1.2)

(Make sure that k is an integer value!).

– More we make iterations more the error becomes smaller. This implies that this method

goes directly to the desired solution. This is called convergence of the method. How-

ever, bisection method is very “slow”, we say that it is a first-order method or a linear

convergence method.

1.2.3 Advantages and disadvantages

Bisection method is always convergent but it is a first-order one (slow).

1.3 Fixed point method

Looking for a solution to f(x) = 0 is exactly looking for the intersection of the graph of f(x)

with the abscissa axe y = 0. In this method we first need to rewrite f(x) = 0 into the form

g(x) = x, then we turn to find the intersection between the graph of g(x) and the line y = x.

This leads to find a fixed point of g (a point xr such that the value of g(xr) is fixed by the value

xr its self, g(xr) = xr). This is the origin of this method’s name.

Figure 1.4: Geometric explication of fixed point method

Exercise 1.2. Rewrite the equation x2 − x− ln(x) = 0 into the form g(x) = x.

Solution 1.3. Here we have many propositions, like:

g1(x) = x2 − 3 ln(x), or g2(x) =
√
x+ 3 ln(x) or g3(x) = e(x2−x)/3.

Question 1.1. Which one of the previous g functions is the “best”?

c©MOKKEDEM F.Z.



6 1. Solving nonlinear equations f(x) = 0

Answer 1. The “best” function is the function which insures the convergence of the method.

In other words, it is the function that satisfies the followings:

Theorem 1.3. Let g be a continuous function on [a, b] and let g′ be its derivative. If

∀x ∈ [a, b], ∃L ≤ 1 such that |g′(x)| ≤ L (1.3)

then g admets a unique fixed point xr on [a, b].

Remark 1.2. The above theorem gives a sufficient condition of convergence not a necessary

one. In other words, this is not the only way to verify the convergence of fixed point method

but it is the most common one.

Remark 1.3. The choice of interval [a, b] is very important in equation (1.3). Observe that if

[a, b] is very large, then such a constant L may not exist for any g function, inversely, if [a, b] is

sufficiently small, then the constant L may exist. For this reason, the more we reduce the lengh

of interval [a, b], the more we have chance for convergence.

1.3.1 Algorithm

After rewriting f(x) = 0 into the form g(x) = x and after making sure that condition (1.3)

is verified, it only left to apply the following algorithm:


x0 given or chosen in [a, b]

xk+1 = g(xk), k ≥ 0.
(1.4)

Example 1.4. Apply fixed point method to approach the solution to equation f(x) = xex−1 =

0 on [0, 1] with x0 = 0 and tolerance of 10−3.

Solution 1.4. We already checked the existence and unicity of the solution to this equation in

example 1.3. Now we put

f(x) = 0 =⇒ xex = 1 =⇒ x = e−x = g(x).

We have |g′(x)| = | − e−x| ≤ 1 on [0, 1]. Hence we can apply algorithm (1.4) with x0 = 0.

c©MOKKEDEM F.Z.



1.3 Fixed point method 7

We get

x1 = g(x0) = g(0) = e−0 = 1,

x2 = g(x1) = g(1) = e−1 = 0.367879441,
...

x12 = g(x11) = 0.566414733,

x13 = g(x12) = 0.567556637,

x14 = g(x13) = 0.566908912.

Finally x13 is an approximate solution of f(x) = 0 with an approximate error less than 10−3.

1.3.2 Error and order of convergence

– At each iteration k we have

Ek = |xr − xk| ≤
Lk

1− L(b− a)

with L the constant from (1.3) and L 6= 1.

– If we need an exactitude of p exact decimals, then we should suppose that

Ek ≤
Lk

1− L(b− a) ≤ 10−p.

This will cost us

tolerance of 10−p =⇒ k ≥
ln
(

(1−L)10−p

b−a

)
ln(k) iteration. (1.5)

Make sure that k is an integer !

– The order of convergence of this method depends on the quantity g′(xr):

– If g′(xr) 6= 0, then the convergence is of order one (linear convergence=slow).

– If g′(xr) = 0, then the convergence is of order two (quadratic convergence=quick).

Remark 1.4. Although the above condition seems simple, it is not helpful because it

depends on xr value which is unknown before calculations.

1.3.3 Advantages and disadvantages

In general, this method is of order two (quick), however, this is not always the case. Moreover,

the convergence of this method is not always guaranteed, the choice of function g as well as the

c©MOKKEDEM F.Z.



8 1. Solving nonlinear equations f(x) = 0

lengh of interval [a, b] is of great unfluence on its convergence.

1.4 Newton-Raphson method

1.4.1 Algorithm

For this method we need to apply the following algorithm:


x0 given or chosen in [a, b]

xk+1 = xk −
f(xk)
f ′(xk)

, k ≥ 0.
(1.6)

We stop the algorithm when xk+1 ∼= xk with the desired precision.

Example 1.5. Apply Newton-Raphson method to approach the solution to equation f(x) =

xex − 1 = 0 on [0, 1] with tolerance of 10−3. Start with x0 = 0.

Solution 1.5. We have f(x) = xex − 1 = 0. Then f ′(x) = (x + 1)ex 6= 0 on [0, 1]. From (1.6)

we have: 
x0 given or chosen in [a, b]

xk+1 = xk −
xke

xk − 1
(xk + 1)exk

, k ≥ 0.

Then

x0 = 0,

x1 = 1,

x2 = 0.68393972,

x3 = 0.577454476,

x4 = 0.567229737, ←− a precision of 10−1

x5 = 0.567143296, ←− a precision of 10−3

x6 = 0.567143290 ←− a precision of 10−8.

1.4.2 Error and order of convergence

– Observing that for g(x) = x− f(x)
f ′(x) , Newton-Raphson method is nothing but a particular

fixed point method.

– If the second derivative of function f exists, then direct computation gives

g′(x) = 1− (f ′(x))2 − f(x)f ′′(x)
(f ′(x))2 = f(x)f ′′(x)

(f ′(x))2 .

c©MOKKEDEM F.Z.



1.4 Newton-Raphson method 9

Putting x = xr (the desired solution), we get g′(xr) = f(xr)f ′′(xr)
(f ′(xr))2 = 0. Hence this method

is of order two (quadratic convergent method).

– Since f(xr) = 0 and since f is continuous, in a small neighberhood of xr, the value of f(x)

must be very small, hence

|g′(x)| =
∣∣∣∣f(x)f ′′(x)

(f ′(x))2

∣∣∣∣ ≤ 1

is guaranteed if the interval [a, b] is small enough or at least if x0 is close enough to xr.

1.4.3 Conditions of convergence

From all the previous discussion, we conclude that some conditions must be fulfilled to

guarantee the application and the convergence of this method. We cite:

– The function f is continuous and two times differentiable on [a, b].

– f(a)f(b) < 0.

– f ′(x) 6= 0 on [a, b].

– f ′′(x) does not change its sign within [a, b] or simply say f ′′(x) 6= 0 on [a, b]. This condition

insures that f does not change its concavity inside [a, b]. See Section 3.4 to understand

why.

– f(x0)f ′′(x0) > 0. This condition is verified when x0 is close enough to xr which is preferred

or
–
∣∣∣∣ f(a)
f ′(a)

∣∣∣∣ < b − a and
∣∣∣∣ f(b)
f ′(b)

∣∣∣∣ < b − a. This condition insures that Newton-Raphson method

will converge at every initial arbitrary point x0 that belongs to [a, b].

1.4.4 Geometric point of view

Let x0 be the initial point. In the first iteration we draw the tangent line of the function f

at point (x0, f(x0)). This tangent line has the equation:

y = f(x0) + f ′(x0)(x− x0).

The intersection of this line with the abscissa axe y = 0 is the point (x1, f(x1)) with:

0 = f(x0) + f ′(x0)(x1 − x0)

or equivalently

x1 = x0 −
f(x0)
f ′(x0) .

Observe that
∣∣∣∣ f(x0)
f ′(x0)

∣∣∣∣ is exactly the distance between x0 and x1. We need this distance to be

small than b− a to insure that x1 is located inside [a, b] and hence is near to the x−root.

c©MOKKEDEM F.Z.



10 1. Solving nonlinear equations f(x) = 0

In the second iteration, we draw the tangent line of f at point (x1, f(x1)). The intersection

of this tangent with the abscissa axe y = 0 is the point (x2, f(x2)) with:

x2 = x1 −
f(x1)
f ′(x1)

and
∣∣∣∣ f(x1)
f ′(x1)

∣∣∣∣ is the distance between x1 and x2. To guarantee that this distance gets smaller and

smaller, we need f to not change its concavity.

Figure 1.5: Geometric explication of Newton-Raphson method

1.4.5 Advantages and disadvantages

This method is not always applicable nor always convergent. These two goals need some

hypothesis to be achieved. However, when this is the case, this method is always of quadratic

order (quick).

1.5 Exercises

Exercise 1.3. Locate possible roots of the following equations:

g(x) = e−x and g(x) = (x− 2)2 + x− ex

π
.

Hint: See Exercise 1.1. One can use the geometric way, see Important 1.

Exercise 1.4. Let the function F (x) = 2x3− x− 2. We wish to solve the equation F (x) = 0 in

[1, 2].

1. Prove that F (x) = 0 admits a unique solution x-root in [1, 2].

c©MOKKEDEM F.Z.



1.5 Exercises 11

2. If using bisection method, how many iterations are required to guarantee that the error is

less than 10−3?

3. Apply the first five iterations of bisection method.

4. We want to reformulate F (x) = 0 to g(x) = x. Check that the following choices of g really

corresond to the equation F (x) = 0:

(a) g(x) = 2x3 − 2.

(b) g(x) = 2
2x2−1 .

(c) g(x) =
(
1 + x

2
) 1

3 .

Check whether or not the iterative processes xk+1 = g(xk) converge.

5. For the convergent process, how many iterations we need to get an error less or equal

10−4?

6. Estimate x-root with x0 = 1.

7. Verify all necessary criteria (conditions) of Newton-Raphson method if one takes x0 = 1.5.

8. Apply Newton-Raphson method to approach x-root.

Hint: 1. Use Theorem 1.2. 2. Use inequality (1.2). 4. Use Theorem 1.3. 5.
Use inequality (1.5). 7. Use Section 1.4.3.

Exercise 1.5. We want to find all the real solutions of x2 = ln(1 + x).

1. Prove that the equation f(x) = x2− ln(1 +x) = 0 has two solutions, the first one is trivial

x∗1 = 0 but the second one, denoted x∗2, is still unknown.

2. Locate x∗2 in an interval of length 1
4 .

3. How many iterations are required, by bisection method, to guarantee that the error is less

than 10−4?

4. Apply the first three iterations of bisection method.

5. Propose a value of initial condition x0 which guarantee the convergence of Newton-Raphson

method.

6. Give the algorithm of Newton-Raphson method on this function and apply the first two

iterations. What is the precision that you got? Conclude.

7. Let the following iterative processes:

xn+1 =
√

ln(1 + xn) and xn+1 = ex
2
n − 1.

Check whether they converge or diverge. For the convergent process, indicate the number

of iterations required to approach x∗2 with a tolerance of 10−4. How do you explain this

number of iterations?

c©MOKKEDEM F.Z.



12 1. Solving nonlinear equations f(x) = 0

Exercise 1.6. We wish to calculate 4
√

1
3 by finding the roots of an application f from R to R.

1. Write this application.

2. Locate the two roots of f . In particular, prove that there exists a unique root in interval

[0, 1].

3. Apply Newton-Raphson method to find this root (we want a tolerance of 10−6).

Hint: We want to find x = 4
√

1
3 that is x4 = 1

3 , hence we need to solve f(x) = x4− 1
3 = 0.

Exercise 1.7. Solve 10ex−2 + sin(3x) − 3 = 0 using a method of your choice on the interval

[0, 1]. If you choose a method which might converge as well as diverge on the given interval,

secure convergence of the method by verifying all necessary conditions.

c©MOKKEDEM F.Z.



Chapter 2
Solving linear systems of form AX=b

In this chapter we need to find the values of (x1, x2, · · · , xn) such that the following system

of equations is satisfied:



a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

...

an1x1 + an2x2 + an3x3 + · · ·+ annxn = bn.

(2.1)

Of course, aij and bi (for i, j = 1, · · · , n) are all supposed to be known.

System (2.1) can be written in the matrix form AX = b by putting

A =



a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
...

...
...

an1 an2 an3 · · · ann


, X =



x1

x2
...

xn


and b =



b1

b2
...

bn


.

In our lecture, we suppose that the linear system AX = b has a unique solution for all vectors

b ∈ Rn. This is guaranteed if and only if det(A) 6= 0.

2.1 Direct methods for solving linear systems

A numerical method is said to be “direct” if it gives, after a finit number of iterations, the

“exact” solution of system (2.1).

This kind of methods is used when n ≤ 100 and A is a full matrix (i.e. it does not contain

a lot of zeros).
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2.1.1 Gauss elimination

The goal of Gauss elimination is to change the couple (A, b) with a new couple (C, d) such

that C is a upper triangular matrix then solve system CX = d.

Definition 2.1. A square matrix C is said to be upper triangular if all the elements under its

diagonal are equal to zero.

2.1.1.1 Naive Gaussian elimination

To transform AX = b to CX = d we need to apply the following algorithm:

Step 0: Construct the augmented matrix (A|b).

Step 1: Define the “pivot” as a11 and transform all the numbers under the pivot to zero value.

This is done as follows: for k from 2 to n: Multiply the first row by ak1/pivot and subtract

the result from the kth row.

Step 2: Define the “pivot” as a22 and transform all the numbers under the pivot to zero value.

This is done as follows: for k from 3 to n: Multiply the second row by ak2/pivot and

subtract the result from the kth row.
...

Step n − 1: Define the “pivot” as an−1,n−1 and transform the number under the pivot to zero

value. This is done as follows: Multiply the n− 1th row by an,n−1/pivot and subtract the

result from the nth row.

Example 2.1. Use Gaussian elimination to solve system



6x1 − 2x2 + 2x3 + 4x4 = 16

12x1 − 8x2 + 6x3 + 10x4 = 26

3x1 − 13x2 + 9x3 + 3x4 = −19

− 6x1 + 4x2 + x3 − 18x4 = −34.

Solution 2.1.

Step 0: The augmented matrix is:

(A|b) =


6 −2 2 4 16

12 −8 6 10 26

3 −13 9 3 −19

−6 4 1 −18 −34

 and X =


x1

x2

x3

x4

 .

c©MOKKEDEM F.Z.



2.1 Direct methods for solving linear systems 15

Step 1: The pivot is a11 = 6, all the values under the pivot must be null.


6 −2 2 4 16

0 −4 2 2 −6

0 −12 8 1 −27

0 2 3 −14 −18


The second row was accomplished by multiplying the first row by 12/6 and subtracting the

result from the second row; the third row was accomplished by multiplying the first row

by 3/6 and subtracting the result from the third row and the fourth row was accomplished

by multiplying the first row by −6/6 and subtracting the result from the fourth row.

Step 2: The pivot is a22 = −4, all the values under the pivot must be null.


6 −2 2 4 16

0 −4 2 2 −6

0 0 2 −5 −9

0 0 4 −13 −21


the third row was accomplished by multiplying the second row by −12/−4 and subtracting

the result from the third row and the fourth row was accomplished by multiplying the

second row by 2/− 4 and subtracting the result from the fourth row.

Step 3: The pivot is a33 = 2, the value under the pivot must be null.


6 −2 2 4 16

0 −4 2 2 −6

0 0 2 −5 −9

0 0 0 −3 −3


The fourth row was accomplished by multiplying the third row by 4/2 and subtracting the

result from the fourth row.

Step 4: Now, we solve the new system of equations:



6x1 − 2x2 + 2x3 + 4x4 =16

−4x2 + 2x3 + 2x4 =− 6

2x3 − 5x4 =− 9

−3x4 =− 3.

Clearly, the last equation is the easiest, it gives x4 = 1. Then the third one implies

x3 = −2 and so on. We call this the “back substitution”. Finally, the solution vector

c©MOKKEDEM F.Z.



16 2. Solving linear systems of form AX=b

X = (x1, x2, x3, x4)T = (3, 1,−2, 1)T .

Remark 2.1.

– If at a step k, the pivot akk = 0, it becomes impossible to divide on zero ! Hence we need

to change the row of the pivot with any other row below it in which the pivot is not null.

– If at a step k, the pivot akk is very small and very close to zero, then the algorithm may

not converge to the exact solution. It is better to change the row of the pivot with any

other row below it in which the pivot is far from zero value.

2.1.1.2 Partial pivoting Gaussian elimination

The goal of this method is to make sure that the pivot is neither null nor close to zero.

Recall that at step k, the pivot is supposed to be the value in akk position. So we first choose

the element that has the biggest absolute value among akk and all values under it. We denote it

apk with p ≥ k. Then we interchange row k with row p. Finally we proceed with the elimination

as shown previously.

Example 2.2. Use partial pivoting Gaussian elimination to solve system



x1 + x2 + x3 + x4 = 10

− x2 + 2x1 + 3x3 − 4x4 = −7

11x4 − 2x3 + 4x2 + 8x1 = 54

x3 − 4x4 + 9x1 − x2 = −6.

Solution 2.2.

Step 0: The augmented matrix is:

(A|b) =


1 1 1 1 10

2 −1 3 −4 −7

8 4 −2 11 54

9 −1 1 −4 −6

 and X =


x1

x2

x3

x4

 .

Step 1: The pivot must be the number of biggest absolute value in colomn 1, so a11 must be 9.

To this end, we interchange row 1 with row 4 including b results:



9 −1 1 −4 −6

2 −1 3 −4 −7

8 4 −2 11 54

1 1 1 1 10


c©MOKKEDEM F.Z.
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After this we proceed with the elimination that gives:


9 −1 1 −4 −6

0 −0.77778 2.7778 −3.1111 −5.6667

0 4.8889 −2.8889 14.556 59.333

0 1.1111 0.88889 1.4444 10.667


Step 2: The pivot must be the number of biggest absolute value in colomn 2 except a12, so a22

must be 4.8889. To this end, we interchange row 2 with row 3:



9 −1 1 −4 −6

0 4.8889 −2.8889 14.556 59.333

0 −0.77778 2.7778 −3.1111 −5.6667

0 1.1111 0.88889 1.4444 10.667


After this we proceed with the elimination that gives:


9 −1 1 −4 −6

0 4.8889 −2.8889 14.556 59.333

0 0 2.3182 −0.79545 3.7727

0 0 1.5455 −1.8636 −2.8182


Step 3: The pivot must be the number of biggest absolute value in colomn 3 except a13 and

a23, so a33 must be 2.3182. To this end, we do not need to interchange row 3 with row 4.

We proceed directly with the elimination that gives:


9 −1 1 −4 −6

0 4.8889 −2.8889 14.556 59.333

0 0 2.3182 −0.79545 3.7727

0 0 0 −1.3333 −5.3333


Step 4: Finally we solve the new system of equations by “back substitution” to get X =

(x1, x2, x3, x4)T = (1, 2, 3, 4)T .

2.1.1.3 Total pivoting Gaussian elimination

Recall that at step k, the pivot is supposed to be the value in akk position. In this method,

we choose the pivot to be the number of biggest absolute value among all elements of k colomn

and also colomns after it. To achieve this goal we need to interchange rows and also colomns

of matrix A. This operation is more complicated than partial pivoting Gaussian elimination

because interchanging colomns requires interchanging components of X vector too !

c©MOKKEDEM F.Z.



18 2. Solving linear systems of form AX=b

Example 2.3. Use total pivoting Gaussian elimination to solve system



9x1 − x3 + 2x4 − 8x2 = 13

x3 + 7x2 + 2x4 − 13x1 = −24

5x1 + 8x2 + x3 + 5x4 = −83

7x3 − x4 + 11x1 − 17x2 = 48.

Solution 2.3.

Step 0: The augmented matrix is:

(A|b) =


9 −8 −1 2 13

−13 7 1 2 −24

5 8 1 5 −83

11 −17 7 −1 48

 and X =


x1

x2

x3

x4

 .

Step 1: The pivot must be the number of biggest absolute value in matrix A, so a11 must be

−17. To this end, we interchange row 1 with row 4 and colomn 1 with colomn 2:

(A|b) =


−17 11 7 −1 48

7 −13 1 2 −24

8 5 1 5 −83

−8 9 −1 2 13


and X =



x2

x1

x3

x4


.

Observe that the unknown vector starts now by x2 instead of x1 ! This is due to inter-

changing colomns 1 and 2. After this we proceed with the elimination that gives:


−17 11 7 −1 48

0 −8.4706 3.8824 1.5882 −4.2353

0 10.176 4.2941 4.5294 −60.412

0 3.8235 −4.2941 2.4706 −9.5882



Step 2: The pivot must be the number of biggest absolute value in matrix A except row 1, so

a22 must be 10.176. To this end, we interchange rows 2 and 3:



−17 11 7 −1 48

0 10.176 4.2941 4.5294 −60.412

0 −8.4706 3.8824 1.5882 −4.2353

0 3.8235 −4.2941 2.4706 −9.5882


c©MOKKEDEM F.Z.



2.1 Direct methods for solving linear systems 19

Observe that interchaging rows do not affect the unknown vector which is still X =

(x2, x1, x3, x4)T . However it affects vector b ! After this we proceed with the elimination:


−17 11 7 −1 48

0 10.176 4.2941 4.5294 −60.412

0 0 7.4569 5.3585 −54.523

0 0 −5.9076 0.76874 13.111



Step 3: The pivot must be the number of biggest absolute value in last two rows and colomns

of matrix A, so a33 must be 7.4569. To this end, we do not need to make any changes.

We proceed with the elimination that gives:


−17 11 7 −1 48

0 10.176 4.2941 4.5294 −60.412

0 0 7.4569 5.3585 −54.523

0 0 0 5.0139 −30.084



Step 4: Finally we solve the new system of equations by “back substitution” to get (x2, x1, x3, x4) =

(−2,−5,−3,−6) which is equivalent to X = (x1, x2, x3, x4)T = (−5,−2,−3,−6)T .

2.1.2 LU decomposition

The goal of LU decomposition (or said LU factorisation) is to change the matrix A with a

product of two matrices L and U such that L is lower triangular and U is upper triangular, see

Definition 2.1 and

Definition 2.2. A square matrix L is said to be lower triangular if all the elements up its

diagonal are equal to zero.

In this manner, system AX = b becomes LUX = b with L and U particular matrices. This

system can be solved in two easy steps: First we solve LY = b then we deduce X from UX = Y .

Remark 2.2. Equation A = LU has an infinity of solutions. Here we focus on two of them:

Crout method: in which we put Uii = 1 for all i = 1, · · · , n.

Doolittle method: in which we put Lii = 1 for all i = 1, · · · , n.

The rest of components of L and U is obtained by computing alternately one row of U and

one colomn of L using the following rule:

c©MOKKEDEM F.Z.



20 2. Solving linear systems of form AX=b

Uij =
Aij −

i−1∑
k=1

LikUkj

Lii
and Lji =

Aji −
i−1∑
k=1

LjkUki

Uii
. (2.2)

Example 2.4. Use LU factorisation in Crout sens to solve system:



x1 − x2 + 2x3 + x4 = 1

3x1 + 2x2 + x3 + 4x4 = 1

5x1 + 8x2 + 6x3 + 3x4 = 1

4x1 + 2x2 + 5x3 + 3x4 = −1.

Solution 2.4. The matrix A of the above system is:

A =


1 −1 2 1

3 2 1 4

5 8 6 3

4 2 5 3

 .

Since we are using CROUT method, the purpose is to find the matrices:

L =


L11 0 0 0

L21 L22 0 0

L31 L32 L33 0

L41 L42 L43 L44

 and U =


1 U12 U13 U14

0 1 U23 U24

0 0 1 U34

0 0 0 1

 .

We start our calculus from the first colomn of L. According to equation (2.2):

L11 = A11
U11

= 1, L21 = A21
U11

= 3,

L31 = A31
U11

= 5, L41 = A41
U11

= 4.

Then, we calculate the elements in first row of U :

U12 = A12
L11

= −1, U13 = A13
L11

= 2, U14 = A14
L11

= 1.

Next, we turn to second colomn of L:

L22 = A22−L21U12
U22

= 5, L23 = A23−L21U13
U33

= 13,

L24 = A24−L21U14
U44

= 6 .
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After that, we compute the second row of U :

U23 = A23 − L21U13
L22

= −1, U24 = A24 − L21U14
L22

= 0.2.

Now, we turn to the third colomn of L:

L33 = A33 − L31U13 − L32U23
U33

= 9, L43 = A43 − L41U13 − L42U23
U33

= 3.

It remains to compute

U34 = A34 − L31U14 − L32U24
U33

= −0.5111

and

L44 = A44 − L41U14 − L42U24 − L43U34
U33

= −0.6667.

Summarizing, we have

L =


1 0 0 0

3 5 0 0

5 13 9 0

4 6 3 −0.6667

 and U =


1 −1 2 1

0 1 −1 0.2

0 0 1 −0.5111

0 0 0 1

 .

Put LY = b, i.e. 
1 0 0 0

3 5 0 0

5 13 9 0

4 6 3 −0.6667




y1

y2

y3

y4

 =


1

1

1

−1


gives (y1, y2, y3, y4) = (1,−0.4, 0.1333, 4.5). Finally, UX = Y , i.e.


1 −1 2 1

0 1 −1 0.2

0 0 1 −0.5111

0 0 0 1




x1

x2

x3

x4

 =


1

−0.4

0.1333

4.5


implies X = (x1, x2, x3, x4)T = (−7.2333, 1.1333, 2.4333, 4.5)T .
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22 2. Solving linear systems of form AX=b

Example 2.5. Use LU factorisation in DOOLITTLE sens to solve the same system in Example

2.4.

Solution 2.5. Since we are using Doolittle method now, the purpose is to find the matrices:

L =


1 0 0 0

L21 1 0 0

L31 L32 1 0

L41 L42 L43 1

 and U =


U11 U12 U13 U14

0 U22 U23 U24

0 0 U33 U34

0 0 0 U44

 .

We start our calculus from the first row of U and we alternate between colomns of L and rows

of U exactly like we did in example 2.4. Calculus shall give:

L =


1 0 0 0

3 1 0 0

5 2.6 1 0

4 1.2 0.3333 1

 and U =


1 −1 2 1

0 5 −5 1

0 0 9 −4.6

0 0 0 −0.6667

 .

Put LY = b gives (y1, y2, y3, y4) = (1,−2, 1.2,−3). Finally, UX = Y implies the same result

X = (x1, x2, x3, x4)T = (−7.2333, 1.1333, 2.4333, 4.5)T .

Remark 2.3. Contrary to Gauss elimination, LU factorisation do not need to know the values

of b vector in the begining.

Important 2. If system AX = b is well posed (det(A) 6= 0 hence matrix A is invertible), then

system AX = b admits a unique solution. Hence, whatever the (direct) method we use, the

result of X−vector must be the same.

2.2 Iterative methods for solving linear systems

A numerical method is said to be “iterative” if it “converges” to the exact solution of system

(2.1).

This kind of methods is used when n ≥ 100 or A is not a full matrix (i.e. it contains a lot

of zeros).

Let AX = b to be solved with

A =



a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
...

...
...

an1 an2 an3 · · · ann


, X =



x1

x2
...

xn


and b =



b1

b2
...

bn


.
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2.2 Iterative methods for solving linear systems 23

Let’s decompose A into three matrices D, E and S of the form:

D =



a11 0 0 · · · 0 0

0 a22 0 · · · 0 0

0 0 a33 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · an−1n−1 0

0 0 0 · · · 0 ann


, E = −



0 0 0 · · · 0 0

a21 0 0 · · · 0 0

a31 a32 0 · · · 0 0
...

...
...

...
...

...

an1 an2 an3 · · · 0 0

an1 an2 an3 · · · ann−1 0


and

S = −



0 a12 a13 · · · a1n−1 a1n

0 0 a23 · · · a2n−1 a2n

0 0 0 · · · a3n−1 a3n
...

...
...

...
...

...

0 0 0 · · · 0 an−1n

0 0 0 · · · 0 0


.

2.2.1 Jacobi’s method 1830

From the above decomposition of matrix A, if D is invertible, then:

AX = b⇒ (D − E − S)X = b

⇒ DX = (E + S)X + b

⇒ X = D−1(E + S)X +D−1b.

2.2.1.1 Algorithm

The algorithm of Jacobi’s method is the following:
X0 given,

Xk+1 = D−1(E + S)Xn +D−1b, k ≥ 0.

According to the special forms of D, E and S, this algorithm is equivalent to


X0 given,

(xi)k+1 = 1
Aii

bi −∑
j<i

Aij(xj)k −
∑
j>i

Aij(xj)k

 , i, j = 1, · · · , n, k ≥ 0

where Xk = (x1, x2, · · · , xn)Tk = (x1k
, x2k

, · · · , xnk
)T .
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24 2. Solving linear systems of form AX=b

Remark 2.4. A square matrix is invertible if and only if its determinant is not null. In particular

D is invertible if and only if all aii are not null (i = 1, · · · , n).

2.2.1.2 Convergence

Theorem 2.1. The algorithm of Jacobi is convergent for any givenX0 to the solution of AX = b

if and only if: all eigenvalues of matrix E + S have a modulus less or equal one. Or if matrix A

is dominant, i.e.:

for any i = 1, · · · , n : |aii| >
n∑

j=1, j 6=i
|aij |.

Or: for any j = 1, · · · , n : |ajj | >
n∑

i=1, i6=j
|aij |.

Example 2.6. Solve the following system using Jacobi algorithm and X0 = (0, 0, 0, 0):



16x1 + 6x2 + 2x3 + 5x4 = 19

4x1 + x2 + 18x3 + 2x4 = 12

x1 + 2x2 + 2x3 + 14x4 = 1

3x1 + 10x2 + 5x3 + x4 = 1.

Solution 2.6. The above system is equivalent to AX = b with

A =


16 6 2 5

4 1 18 2

1 2 2 14

3 10 5 1

 , X =


x1

x2

x3

x4

 and b =


19

12

1

1

 .

Observe that the conditions in Theorem 2.1 are not satisfied. However, if we permute rows 2, 3

and 4, this problem will be solved:

A =


16 6 2 5

3 10 5 1

4 1 18 2

1 2 2 14

 , X =


x1

x2

x3

x4

 and b =



19

1

12

1


.
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According to Jacobi’s algorithm, we have:

(x1)k+1 = 1
A11

b1 −
∑
j>1

A1j(xj)k

 = 1
16 [19− 6(x2)k − 2(x3)k − 5(x4)k]

(x2)k+1 = 1
A22

b2 −A21(x1)k −
∑
j>2

A2j(xj)k

 = 1
10 [1− 3(x1)k − 5(x3)k − (x4)k]

(x3)k+1 = 1
A33

b3 −
∑
j<3

A3j(xj)k −A34(x4)k

 = 1
18 [12− 4(x1)k − (x2)k − 2(x4)k]

(x4)k+1 = 1
A44

b4 −
∑
j<4

A4j(xj)k

 = 1
14 [1− (x1)k − 2(x2)k − 2(x3)k] .

For k = 0, we have X0 = (0, 0, 0, 0)T . Then X1 =
(

19
16 ,

1
10 ,

2
3 ,

1
14

)T
. Next

X2 = (1.0443,−0.5967, 0.3893,−0.1229)T . After many iterations (29 iteration) we get

X28 ≈ X29 = (1.3269,−0.4974, 0.4005,−0.0095)T .

Note that this is not the exact solution of the given system, it is just an approxi-
mation of it! For example, by replacing this result in the first equation, we get

16(1.3269) + 6(−0.4974) + 2(0.4005) + 5(−0.0095) = 18.9995 ≈ 19.

2.2.2 Gauss-Seidel’s method 1846

From the decomposition of matrix A, if D − E is invertible, then:

AX = b⇒ (D − E − S)X = b

⇒ (D − E)X = SX + b

⇒ X = (D − E)−1SX + (D − E)−1b.

The algorithm of Gauss-Seidel method is the following:
X0 given,

Xk+1 = (D − E)−1SXn + (D − E)−1b, k ≥ 0.

According to the special forms of D, E and S, this algorithm is equivalent to


X0 given,

(xi)k+1 = 1
Aii

bi −∑
j<i

Aij(xj)k+1 −
∑
j>i

Aij(xj)k

 , i, j = 1, · · · , n, k ≥ 0
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26 2. Solving linear systems of form AX=b

where Xk = (x1, x2, · · · , xn)Tk = (x1k
, x2k

, · · · , xnk
)T .

Remark 2.5. D−E is invertible if and only if no aii is null for all i = 1, · · · , n (same condition

in Remark 2.4).

The only difference between this algorithm and the one of Jacobi is in the term:
∑
j<i

Aij(xj)k+1.

Although this algorithm seems to be more difficult than the one of Jacobi, it is more useful in

programmation and quicker in convergence. Note that Theorem 2.1 is still valid here.

Example 2.7. Solve the system in Example 2.6 using Gauss-Seidel algorithm and X0 = 04.

Recall: 

16x1 + 6x2 + 2x3 + 5x4 = 19

4x1 + x2 + 18x3 + 2x4 = 12

x1 + 2x2 + 2x3 + 14x4 = 1

3x1 + 10x2 + 5x3 + x4 = 1.

Solution 2.7. The above system is equivalent to AX = b with

A =


16 6 2 5

3 10 5 1

4 1 18 2

1 2 2 14

 , X =


x1

x2

x3

x4

 and b =


19

1

12

1

 .

According to Gauss-Siedel algorithm, we have:

(x1)k+1 = 1
A11

b1 −
∑
j>1

A1j(xj)k

 = 1
16 [19− 6(x2)k − 2(x3)k − 5(x4)k]

(x2)k+1 = 1
A22

b2 −A21(x1)k+1 −
∑
j>2

A2j(xj)k

 = 1
10 [1− 3(x1)k+1 − 5(x3)k − (x4)k]

(x3)k+1 = 1
A33

b3 −
∑
j<3

A3j(xj)k+1 −A34(x4)k

 = 1
18 [12− 4(x1)k+1 − (x2)k+1 − 2(x4)k]

(x4)k+1 = 1
A44

b4 −
∑
j<4

A4j(xj)k+1

 = 1
14 [1− (x1)k+1 − 2(x2)k+1 − 2(x3)k+1] .

For k = 0, we have X0 = (0, 0, 0, 0)T . Then X1 = (1.1875,−0.2563, 0.4170,−0.0364)T . Next

X2 = (1.2428,−0.47777, 0.4211,−0.0093)T . After 10 iteration we get

X9 ≈ X10 = (1.3269,−0.4974, 0.4005,−0.0095)T .

Observe that the same approximate solution was found after 29 iterations of Jacobi
algorithm but only after 10 iterations of Gauss-Siedel algorithm!
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2.3 Exercises 27

2.3 Exercises

Exercise 2.1. We wish to solve the following linear systems:

1.



x1 − x2 + 2x3 + x4 = 1

3x1 + 2x2 + x3 + 4x4 = 1

5x1 + 8x2 + 6x3 + 3x4 = 1

4x1 + 2x2 + 5x3 + 3x4 = −1.

2.



6x1 − 2x2 + 2x3 + 4x4 = 16

12x1 − 8x2 + 6x3 + 10x4 = 26

3x1 − 13x2 + 9x3 + 3x4 = −19

− 6x1 + 4x2 + x3 − 18x4 = −34.

3.



x1 + 2x2 + x3 − x4 = 5

3x1 + 6x2 + 4x3 + 4x4 = 16

4x1 + 4x2 + 3x3 + 4x4 = 22

2x1 + x3 + 5x4 = 15.

1. Solve the above systems by naive Gaussian ellimination.

2. Solve the above systems by total pivoting Gaussian ellimination.

3. Solve the above systems by LU factorisation in CROUT sens.

4. Solve the above systems by LU factorisation in DOOLITTLE sens.

Hint:

1. =⇒



x1

x2

x3

x4


=



−7.2333

1.1333

2.4333

4.5


2. =⇒



x1

x2

x3

x4


=



3

1

−2

1


3. =⇒



x1

x2

x3

x4


=



4

−12

22

−3


.

Exercise 2.2. Let the linear system of dimension 3: Ax = b where α and β are two real

numbers:

A =


1 2 3

0 α 1

3 3 6

 and b =


β

2

0

 .
1. Give the decomposition LU of A.

2. Under which condition on α this decomposition exists?

3. For each value of α and β, this system admits a unique solution? Find it.
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28 2. Solving linear systems of form AX=b

Exercise 2.3. Consider the following matrix A and vector b:

A =


6 −2 2

−2 5 0

2 0 7

 and b =


0

23

16

 .

1. Solve the system Ax = b by the Gaussian method.

2. Give the decomposition LU of matrix A then solve the system Ax = b by LU factorisation.

3. Prove that matrix A is symetric positive definite. Solve the system Ax = b by the method

of Choleski. (additional question)

4. Check the convergence of iterative methods.

5. Solve the system Ax = b using the iterations of the Jacobi method, start with x0 = (1, 0, 0).

6. Solve the system Ax = b using the iterations of the Gauss-Seidel method, start with

x0 = (1, 0, 0).

Hint: The solution is (x1, x2, x3)T = (1, 5, 2)T .

Exercise 2.4. Take the following linear system:


2x1 + x2 + x3 = 8

x1 + 2x2 + x3 = 9

x1 + x2 + 4x3 = 19.

1. Prove that matrix A is symetric positive definite. Solve the system Ax = b by the method

of Choleski. (additional question)

2. Check the convergence of iterative methods then find the solution by Gauss-Seidel method

by starting from the null vector.

Hint: The solution is (x1, x2, x3)T = (1, 2, 4)T .

Exercise 2.5. Take the following linear system:



5x1 − x2 − x3 − x4 = −4

− x1 + 10x2 − x3 − x4 = 12

− x1 − x2 + 5x3 − x4 = 8

− x1 − x2 − x3 + 10x4 = 34.

1. Check the convergence of iterative methods then find the solution by Jacobi method and

by Gauss-Seidel method by starting from the null vector.

Hint: The solution is (x1, x2, x3, x4)T = (1, 2, 3, 4)T .
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Chapter 3
Polynomial interpolation

3.1 Introduction

Let f be a function of independent variable x and suppose that the explicite expression of

f(x) is unknown. Instead, a data set of values (xi, f(xi)) is given:

x0 x1 x2 · · · xn

f(x0) f(x1) f(x2) · · · f(xn)

Problem 1.
– Suppose that we need to know the value of f(x̃) with x̃ ∈ [x0, xn] but x̃ 6= xi, for any

i = 0, · · · , n.

– Suppose that we need to integrate or derive f inside [x0, xn].

– Suppose that we need to know the maximum or minumum value of f inside [x0, xn].

All the above operations (and others) can not be directly done since the explicite expression of

f(x) is unknown.

In this Chapter, we approximate f by the polynomial that respects the following inter-
polation conditions:

1. For n+ 1 giving nodes, the polynomial is of degree less or equal n:

Pn(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n.

Remark 3.1. This gives n+ 1 unknown coefficient (a0, · · · , an) which matches very well

the n+ 1 known data points (x0, · · · , xn).

2. The polynomial passes exactly through the points of the data set:

Pn(xi) = f(xi), ∀i = 0, · · · , n.
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Remark 3.2. Of course, we do not want to lose any of the information we have. Mathe-

matically, under this condition, the distance between the polynomial Pn(x) and the func-

tion f(x) at the data points xi is null.

3. The distance between the polynomial Pn(x) and the function f(x) between the data points

xi is bounded.

From the interpolation conditions 1. and 2. we have a system of linear equations of type:



Pn(x0) = a0 + a1x0 + a2x
2
0 + · · ·+ anx

n
0 = f(x0),

Pn(x1) = a0 + a1x1 + a2x
2
1 + · · ·+ anx

n
1 = f(x1),

· · ·

Pn(xn) = a0 + a1xn + a2x
2
n + · · ·+ anx

n
n = f(xn).

Although the above system is formed by n+ 1 equation with n+ 1 unknown coefficient, once n

exceeds 3, it becomes hard to be solved by hand.

Example 3.1. Use the interpolation conditions to find the interpolating polynomial of the

following data:

xi 0 1 3 5 6

f(xi) 1 2 2 -1 -2

Solution 3.1. We have 5 points so we look for a polynomial of degree less or equal 4:

P4(x) = a0 + a1x+ a2x
2 + a3a

3 + a4x
4.

Since P4(xi) = f(xi) for all i = 0, · · · , 4 then



P4(x0) = P4(0) = a0 = f(0) = 1,

P4(x1) = P4(1) = a0 + a1 + a2 + a3 + a4 = f(1) = 2,

P4(x2) = P4(3) = a0 + 3a1 + 9a2 + 27a3 + 81a4 = f(3) = 2,

P4(x3) = P4(5) = a0 + 5a1 + 25a2 + 125a3 + 625a4 = f(5) = −1,

P4(x4) = P4(6) = a0 + 6a1 + 36a2 + 216a3 + 1296a4 = f(6) = −2.

Equivalently, we have:



1 0 0 0 0

1 1 1 1 1

1 3 9 27 81

1 5 25 125 625

1 6 36 216 1296





a0

a1

a2

a3

a4


=



1

2

2

−1

−2


.
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3.2 Lagrange interpolation method 31

After calculations we find: (we can use Chapter 2: Solving Linear systems AX = b)

P4(x) = 1
360

(
7x4 − 66x3 + 53x2 + 366x+ 360

)
.

0 1 2 3 4 5 6

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

experimental data
Polynomial interpolation

Figure 3.1: Polynomial interpolation (Example 3.1)

Question 3.1. How to make sure that the final result is true?

Answer 2. Using condition 2. it suffices to substitute any value of given xi in the final result

and verify that the value of Pn(xi) is exactly equal to the given value f(xi).

Question 3.2. How many interpolating polynomial one can find?

Answer 3. The interpolating polynomial, if it exists, is unique.

Question 3.3. Is there any other method to find the interpolating polynomial?

3.2 Lagrange interpolation method

This method is composed of two steps. In step 1. we calculate the Lagrangian components

L(xi) =
n∏

j=0,j 6=i

x− xj
xi − xj

.
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32 3. Polynomial interpolation

Later in step 2. we formulate the interpolating polynomial as follows:

Pn(x) =
n∑
i=0

f(xi)L(xi).

Example 3.2. From the data in Example 3.1, find the interpolating polynomial by using La-

grange method.

Solution 3.2. Since we have 5 points we need to find 5 Lagrangian components:

L(x0) = L(0) = (x− 1)(x− 3)(x− 5)(x− 6)
(0− 1)(0− 3)(0− 5)(0− 6) ,

L(x1) = L(1) = (x− 0)(x− 3)(x− 5)(x− 6)
(1− 0)(1− 3)(1− 5)(1− 6) ,

L(x2) = L(3) = (x− 0)(x− 1)(x− 5)(x− 6)
(3− 0)(3− 1)(3− 5)(3− 6) ,

L(x3) = L(5) = (x− 0)(x− 1)(x− 3)(x− 6)
(5− 0)(5− 1)(5− 3)(5− 6) ,

L(x4) = L(6) = (x− 0)(x− 1)(x− 3)(x− 5)
(6− 0)(6− 1)(6− 3)(6− 5) .

Then

P4(x) =
4∑
i=0

f(xi)L(xi) = L(0)− L(5) + 2(L(1) + L(3)− L(5)).

After computations, we find the same polynomial:

P4(x) = 1
360

(
7x4 − 66x3 + 53x2 + 366x+ 360

)
.

Remark 3.3. The Lagrangian components depend only on x values. Hence, same Lagrangian

components L(xi) can be used to interpolate an infinity of functions that share same nodes xi.

3.3 Newton divided difference interpolation method

This method is composed of two steps. In step 1. we calculate the divided differences as

follows:

First divided difference: f [x0, x1] := f(x1)−f(x0)
x1−x0

. In general,

f [xi, xi+1] := f(xi+1)− f(xi)
xi+1 − xi

, i = 0, · · · , n− 2.
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Observe that in the denominator we have xi+1 − xi.

Second divided difference: f [x0, x1, x2] := f [x1,x2]−f [x0,x1]
x2−x0

. In general,

f [xi, xi+1, xi+2] := f [xi+1, xi+2]− f [xi, xi+1]
xi+2 − xi

, i = 0, · · · , n− 1.

Observe that in the denominator we have xi+2 − xi. So one value (xi+1) is neglected.

Third divided difference: f [x0, x1, x2, x3] := f [x1,x2,x3]−f [x0,x1,x2]
x3−x0

. In general,

f [xi, xi+1, xi+2, xi+3] := f [xi+1, xi+2, xi+3]− f [xi, xi+1, xi+2]
xi+3 − xi

, i = 0, · · · , n− 3.

Observe that in the denominator we have xi+3−xi. So two values (xi+1 and xi+2) are neglected.

· · ·

nth divided difference: f [x0, x1, ·, xn] := f [x1,·,xn]−f [x0,x1,·,xn−1]
xn−x0

.

Observe that in the denominator we have xn − x0. So all other values are neglected.

Those values forme the divided difference’s table, see the next example. Later in step 2. we

construct the interpolating polynomial as follows:

Pn(x) =f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) + · · ·

+ f [x0, x1, · · · , xn](x− x0)(x− x1) · · · (x− xn−1).

Example 3.3. From the data set of Example 3.1, find the interpolating polynomial by using

Newton divided differences formula.

Solution 3.3. We start by fulling up the table of divided differences:

xi f(xi) f [xi, xi+1] f [xi, xi+1, xi+2] f [xi, · · · , xi+3] f [xi, · · · , xi+3, xi+4]

0 1

1 2 2−1
1−0 = 1

3 2 2−2
3−1 = 0 0−1

3−0 = −1
3

5 −1 −1−2
5−3 = −3

2
−3
2 −0
5−1 = −3

8
−3
8 −

−1
3

5−0 = −1
120

6 −2 −2−(−1)
6−5 = −1 −1−−3

2
6−3 = 1

6
1
6−
−3
8

6−1 = 13
120

13
120−

−1
120

6−0 = 7
360

Then we apply Newton’s formula:

P4(x) = 1 + 1(x− 0)− 1
3(x− 0)(x− 1)− 1

120(x− 0)(x− 1)(x− 3)

+ 7
360(x− 0)(x− 1)(x− 3)(x− 5)

to find

P4(x) = 1
360

(
7x4 − 66x3 + 53x2 + 366x+ 360

)
.
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34 3. Polynomial interpolation

3.4 Newton finite difference interpolation method

In particular, if the distance between xi and xi+1 (called the step) is constant, then the

calculus can be simplified as follows:

First finite difference: ∆f(x0) := f(x1)− f(x0). In general,

∆f(xi) := f(xi+1)− f(xi), i = 0, · · · , n− 1.

Observe that there is no fraction here.

Second finite difference: ∆2f(x0) := ∆f(x1)−∆f(x0). In general,

∆2f(xi) := ∆f(xi+1)−∆f(xi), i = 0, · · · , n− 2.

nth finite difference: ∆nf(x0) := ∆n−1f(x1)−∆n−1f(x0).

Those values forme the finite difference’s table, see the next example.

Later in step 2. we construct the interpolating polynomial as follows:

Pn(x) =f(x0) + ∆f(x0)
1! h (x− x0) + ∆f(x0)

2! h2 (x− x0)(x− x1) + · · ·

+ ∆nf(x0)
n! hn (x− x0)(x− x1) · · · (x− xn−1)

where h = xi+1 − xi is the constant step between the nodes of data set.

Remark 3.4. Here we can not copy the Data set of example 1.3 because the step there is not

constant.

Example 3.4. Find the interpolating polynomial of the following data set by using Newton

finite difference interpolation formula:

xi 1 3 5 7

f(xi) 2 4 0 2

Solution 3.4. We start by fulling up the table of finite differences:

xi f(xi) ∆f(xi) ∆2f(xi) ∆3f(xi)

1 2

3 4 4− 2 = 2

5 0 0− 4 = −4 −4− 2 = −6

7 2 2− 0 = 2 2− (−4) = 6 6− (−6) = 12
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3.5 Error for polynomial interpolation 35

Then we apply Newton’s formula (here h = 2):

P3(x) = 2 + 2
1! 2(x− 1)− 6

2! 22 (x− 1)(x− 3) + 12
3! 23 (x− 1)(x− 3)(x− 5)

= 1
4
(
x3 − 12x2 + 39x− 20

)
.

1 2 3 4 5 6 7

x

-1

0

1

2

3

4

5

y

experimental data
Polynomial interpolation

Figure 3.2: Polynomial interpolation with constant step (Example 3.4)

Exercise 3.1. Find the advantages and disadvantages of each of the previous methods.

3.5 Error for polynomial interpolation

Definition 3.1. For any x ∈ [x0, xn], we define by the error at x the distance between the exact

value f(x) and the approached value Pn(x):

∀x ∈ [x0, xn], E(x) = |f(x)− Pn(x)|.

Recall 3.1. From interpolation conditions we know that, for any xi, i = 0, · · ·n, E(xi) = 0 and

that the error is bounded elsewhere.

Theorem 3.1. Suppose that the function f is (n + 1) times continuously differentiable over
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36 3. Polynomial interpolation

[x0, xn]. Then, for any given y ∈ [x0, xn], the error at point y is given by:

|E(y)| =

∣∣∣f (n+1)(ξ)
∣∣∣

(n+ 1)!

∣∣∣ n∏
i=0

(y − xi)
∣∣∣ for some ξ ∈]x0, xn[. (3.1)

Remark 3.5. Since we do not know the exact value of ξ, we can not apply equation (3.1) in

its previous form. We shall replace the term |f (n+1)(ξ)| by its maximum absolute value over

[x0, xn]. This gives a computable estimation of |E(y)|:

|E(y)| ≤
max

x∈[x0,xn]

∣∣∣f (n+1)(x)
∣∣∣

(n+ 1)!

∣∣∣ n∏
i=0

(y − xi)
∣∣∣. (3.2)

Example 3.5. Consider f(x) =
√
x. Take three nodes x1 = 100, x2 = 121 and x3 = 144. Find

an estimate for the error of interpolation at y = 115.

Solution 3.5. We shall apply equation (3.2) with n+ 1 = 3 points. We have

f(x) =
√
x =⇒ f ′(x) = 1

2
√

2
=⇒ f ′′(x) = −1

4x
3
2

=⇒ f ′′′(x) = 3
8x

5
2
.

So max
x∈[100,144]

∣∣∣f ′′′(x)
∣∣∣ = 0.00000375. Then

|E(115)| ≤ 0.00000375
3!

∣∣∣(115− 100)(115− 121)(115− 144)
∣∣∣ ≤ 0.00163125.

Remark 3.6. By replacing the term
∣∣∣ n∏
i=0

(y− xi)
∣∣∣ by its maximum absolute value over [x0, xn],

we get the maximum error possible on [x0, xn]:

max
x∈[x0,xn]

|E(x)| ≤
max

x∈[x0,xn]

∣∣∣f (n+1)(x)
∣∣∣

(n+ 1)! max
x∈[x0,xn]

∣∣∣ n∏
i=0

(x− xi)
∣∣∣. (3.3)

Example 3.6. For the example 3.5 find an estimate for the maximum error for interpolation

possible on [100, 144].

Solution 3.6. Here we shall apply equation (3.3). We have:

n∏
i=0

(x− xi) = (x− 100)(x− 121)(x− 144)

= x3 − 365x2 + 43924x− 1742400.

The table of variation of this equation is the following:
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x 100 108.96058763 134.37274570 144

derivative + 0 − 0 +
n∏
i=0

(x− xi) 0�3780.059149�−4425.244334�0

Then

max
x∈[x0,xn]

∣∣∣ n∏
i=0

(x− xi)
∣∣∣ = 4425.244334.

Hence

max
x∈[x0,xn]

|E(x)| ≤ 0.00000375
3! 4425.244334 = 0.0027657777.

Remark 3.7. Observe that if n exceeds 3, the table of variation of
n∏
i=0

(x − xi) becomes very

hard to be determined. In the particular case of equally spaced nodes xi, we have

max
x∈[x0,xn]

∣∣∣ n∏
i=0

(x− xi)
∣∣∣ ≤ 1

4h
n+1n!

with h = xi+1 − xi is the constant step. Substituting this result in equation (3.3), we get:

max
x∈[x0,xn]

|E(x)| ≤ hn+1

4(n+ 1) max
x∈[x0,xn]

∣∣∣f (n+1)(x)
∣∣∣. (3.4)

Remark 3.8. It is worthy to mention that all the above formulas depend on f (n+1) which is

not known unless f itself is known (and (n+1)-times differentiable). Whereas if f is well known

then no need to approximate it by a polynomial !

3.6 Exercises

Exercise 3.2. By recording the temperatures of a plate in relation to its length in a refrigeration

installation, the following table was obtained:

Length (x) 0 2 4 8 10

Temperature (y) -1 1 0 2 5

1. Find the Lagrange interpolating polynomial for the above data on [0, 10]. Is it necessary

to calculate L(4)? Why?

2. Find the interpolating polynomial in Newton form of the above data on [0, 10]. Is it the

same polynomial found in question 1.? Why?

3. Can we use the table of finite differences to find the interpolating polynomial? Why?

4. Add the point (6, 1) and find the interpolating polynomial of the temperature on [0, 10]

by all possible methods. What do you notice?
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38 3. Polynomial interpolation

5. We repeated the same experiment for another refrigeration installation and we obtained

the following table:

Length (x) 0 2 4 6 8 10

Temperature (y) -2 -1 0 1.5 2.1 3

Find the interpolating polynomial on [0, 10] by a method of your choice. Justify your

choice.

This exercise helps you to solve the exercise 1.1.

Exercise 3.3.

1. Find the Lagrange interpolating polynomials of functions f, g and h using the following

values:

xi -1 2 4 5

f(xi) -2 43 213 376

g(xi) 104 83 21 6

h(xi) 4 0 -2 0

What do you notice?

2. Add the point f(6) = 400 and reconstruct the interpolating polynomial of f . What do

you notice?

3. Change the point (5, g(5) = 6) by the point (7, g(7) = 6) and reconstruct the interpolating

polynomial of g. What do you notice?

4. Redo the exercise by Newton’s method. What do you notice?

This exercise also helps you to solve the exercise 1.1.

Exercise 3.4. Round answers to eight decimal places
Consider the function f(x) = e−

x
10 on the interval [0, 3] by the following table:

x 0 1 2 3

f(x) 1 0.904837 0.818731 0.740818

1. Approximate the value of f at the point x = 1.5 using the Lagrange interpolating polyno-

mial.

2. Using the exact value f(1.5) and the approximated value P (1.5) found in question 1.,

calculate the exact error of interpolation at the point x = 1.5.

3. Using the error form for interpolation, determine the error at the point x = 1.5.

4. Determine the maximum error bound when the polynomial is used to approximate f(x)

for x ∈ [0, 3].
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5. Find the polynomial of interpolation of f(x) using both methods of Newton.

Hint: 2. Calculate |f(1.5)− P (1.5)|. 3. Use Inequality (3.2). 4. Use Inequality (3.3),
the polynomial 2x3 − 9x2 + 11x − 3 vanishes at points x1 = 0.381966012, x2 = 1.5 and
x3 = 2.618033989.

Exercise 3.5.

1. Complete the following table of divided differences:

x f(x)

-1

1 0

-11 -10 -5

3 -61

4 -144 -9

2. Choose the correct answer and justify your choice: The interpolating polynomial of f(x)

is:

(a) P (x) = −x4 + x3 + 2x2 + x− 2.

(b) P (x) = −x4 + x3 − x2 + x− 1.

(c) P (x) = x4 + x3 − x2 − x− 1.

3. Can we find an error bound for the polynomial interpolation? Why?

Hint: 2. Use Answer 2 of Question 3.1. 3. Remember Remark 3.8.

Exercise 3.6.

1. Determine the interpolating polynomial P3(x) of degee at the most 3 of the function

f(x) = sin(π(x+1)
3 ) on the interval [−1, 5] with a step size h = 2 using the method of

divided differences.

2. Find the worst case (maximum) estimate for the error that is valid for x throught the

interval [−1, 5], i.e., find a constante M such that:

max
x∈[−1,5]

|E(x)| = max
x∈[−1,5]

|f(x)− P3(x)| ≤M.

Hint: 2. You can use inequality (3.3) or inequality (3.4).

Exercise 3.7. Application

1. Suppose that a function f(·) defined on an interval [a, b] is known on one point x = a+b
2 .

(a) Interpolate the function f(·) by a polynomial P (·).

(b) Approximate
∫ b
a f(x) dx by

∫ b
a P (x) dx.
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40 3. Polynomial interpolation

2. Suppose now that the function f is known on two points x0 = a and x1 = b. Redo question

1.

3. Redo question 1. if the function f is known on three points x0 = a, x1 = a+b
2 and x2 = b.

Hint: This exercise introduce the numerical integration process, see Chapter 5.
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Chapter 4
Least squares approximation

4.1 Problem formulation

The polynomial interpolation is the simplest way to fit a curve to experimental data (xi, yi),

hence it is the key to solve many problems like Problem 1. However, it has some disadvantages.

Problem 2.
– If the number of interpolation points (n + 1) is high, then the degree of the interpolation

polynomial (n) is also high. As a result, the interpolation polynomial (Pn(x)) is not nec-

essarily convergent to the unknown function (f) generating the data and the interpolation

error risks to be very important. This does not fullfill the interpolaion condition 3.

– Since the data set (interpolation points) are experimental then some degree of error is

made when measuring them. Hence it is not “right” to construct a curve that goes “ex-

actly” throw every data point. However this is the essential interpolaion condition 2.!

In this Chapter instead of supposing that

Pn(xi) = yi, for all i = 1, · · · , n+ 1

we will minimize the sum of the squares of the distances between the polynomial Pn(xi) and the

data yi = f(xi) over all the points xi:

S =
n+1∑
i=1

(Pn(xi)− yi)2.

We call this technique the approximation of a data set of points with a polynomial Pn in least

squares sens.

To avoid the first disadvantage cited above and to make calculus shorter, we can ignore

the interpolation condition 1. In other words, we can approximate the data points with any

polynomial of any degree. For example, we can aproximate a set of n + 1 points by a straight

line y = ax+ b which is a polynomial of degree 1.
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Moreover, by observing the “shape of data points” in a graph, we can approximate them

by any function following the sens of data. This means that not only polynomials can fit the

experimental data. The only condition is that the sum of the squares of the distances between

the approximation function (denoted g(xi)) and the data yi:

S =
n+1∑
i=1

(g(xi)− yi)2

is minimized.

4.2 Construction of the line of best fit

Let (xi, yi) for i = 1, · · · , n be a set of experimental data points. We want to approximate

this data by the straight line g(x) = a0 + a1x which minimizes the quantity:

S =
n∑
i=1

(yi − a0 − a1xi)2 =
n∑
i=1

(a0 + a1xi − yi)2.

This amounts to find where the partial derivatives ∂S

∂a0
and ∂S

∂a1
vanish:


∂S

∂a0
= 2

n∑
i=1

(a0 + a1xi − yi) = 0,

∂S

∂a1
= 2

n∑
i=1

xi(a0 + a1xi − yi) = 0.

This implies that 
a0

n∑
i=1

1 + a1

n∑
i=1

xi =
n∑
i=1

yi,

a0

n∑
i=1

xi + a1

n∑
i=1

x2
i =

n∑
i=1

xiyi.

Observe that
n∑
i=1

1 = n, hence:

 n
n∑
i=1

xi

n∑
i=1

xi
n∑
i=1

x2
i


 a0

a1

 =


n∑
i=1

yi

n∑
i=1

xiyi

 .

The resolution of this system conducts to the desired result.

Example 4.1. Let

xi 10 20 30 40 50 60

yi 0.33 0.8 1.31 1.61 2.01 2.26
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Using the least square method, approximate the above data by a straight line.

Solution 4.1. We want to approximate this data of 6 points by the straight line g(x) = a0 +a1x

which minimizes the quantity:

S =
6∑
i=1

(a0 + a1xi − yi)2.

Putting the partial derivatives ∂S

∂a0
and ∂S

∂a1
null gives:


6 a0 + a1

6∑
i=1

xi =
6∑
i=1

yi,

a0

6∑
i=1

xi + a1

6∑
i=1

x2
i =

6∑
i=1

xiyi.

This implies that 
6 a0 + 210a1 = 8.32,

210a0 + 9100a1 = 359.1.

Solving this system gives:

a0 = 0.0287 and a1 = 0.0388.

Hence the line of best fit is

g(x) = 0.0287 + 0.0388 x.

10 15 20 25 30 35 40 45 50 55 60

x

0

0.5

1

1.5

2

2.5

y

experimental data
approximation y=0.0287+0.0388x

Figure 4.1: Linear approximation (Example 4.1)
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4.3 Construction of the polynomial of best fit

Let (xi, yi) for i = 1, · · · , n be a set of experimental data points. We want to approximate

this data by the polynomial of degree k:

g(x) = a0 + a1x+ a2x
2 + · · ·+ akx

k

which minimizes the quantity:

S =
n∑
i=1

(a0 + a1xi + a2x
2
i + · · ·+ akx

k
i − yi)2.

This amounts to find where all the partial derivatives ∂S

∂aj
for j = 1, · · · , k vanish:



∂S

∂a0
= 2

n∑
i=1

(a0 + a1xi + a2x
2
i + · · ·+ akx

k
i − yi) = 0,

∂S

∂a1
= 2

n∑
i=1

xi(a0 + a1xi + a2x
2
i + · · ·+ akx

k
i − yi) = 0,

...

∂S

∂ak
= 2

n∑
i=1

xki (a0 + a1xi + a2x
2
i + · · ·+ akx

k
i − yi) = 0.

This implies that



a0

n∑
i=1

1 + a1

n∑
i=1

xi + a2

n∑
i=1

x2
i + · · ·+ ak

n∑
i=1

xki =
n∑
i=1

yi,

a0

n∑
i=1

xi + a1

n∑
i=1

x2
i + a2

n∑
i=1

x3
i + · · ·+ ak

n∑
i=1

xk+1
i =

n∑
i=1

xiyi,

...

a0

n∑
i=1

xki + a1

n∑
i=1

xk+1
i + a2

n∑
i=1

xk+2
i + · · ·+ ak

n∑
i=1

x2k
i =

n∑
i=1

xki yi.

Or equivalently:



n
n∑
i=1

xi
n∑
i=1

x2
i · · ·

n∑
i=1

xki

n∑
i=1

xi
n∑
i=1

x2
i

n∑
i=1

x3
i · · ·

n∑
i=1

xk+1
i

... . . . ...
n∑
i=1

xki
n∑
i=1

xk+1
i

n∑
i=1

xk+2
i · · ·

n∑
i=1

x2k
i





a0

a1
...

ak


=



n∑
i=1

yi

n∑
i=1

xiyi

...
n∑
i=1

xki yi


.
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4.3 Construction of the polynomial of best fit 45

The resolution of this system conducts to the desired result.

Example 4.2. Consider the following time series data:

xi 0 1 2 3 4 5

yi 2.1 7.7 13.6 27.2 40.9 61.1

Using the least square method, approximate the above data by a polynomial of degree 2.

Solution 4.2. We want to approximate the above data of 6 points by the polynomial of degree

2: g(x) = a0 + a1x+ a2x
2 by minimizing the quantity:

S =
6∑
i=1

(a0 + a1xi + a2x
2
i − yi)2.

Putting the three partial derivatives ∂S

∂a0
,
∂S

∂a1
and ∂S

∂a2
null gives:



6
6∑
i=1

xi
6∑
i=1

x2
i

6∑
i=1

xi
6∑
i=1

x2
i

6∑
i=1

x3
i

6∑
i=1

x2
i

6∑
i=1

x3
i

6∑
i=1

x4
i




a0

a1

a2

 =



n∑
i=1

yi

n∑
i=1

xiyi

n∑
i=1

x2
i yi


.

This implies that 
6 15 55

15 55 225

55 225 979



a0

a1

a2

 =


152.6

585.6

2488.8

 .
After calculation, we get

a0 = 2.48, a1 = 2.36 and a2 = 1.86.

Hence the best approximation with a polynomial of degree 2 is made by

g(x) = 2.48 + 2.36 x+ 1.86 x2.
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approximation y=2.48+2.36x+1.86x2

Figure 4.2: Polynomial approximation (Example 4.2)

4.4 Construction of the function of best fit

According to the least squares approach, it is not necessary to approximate the experimental

data with a polynomial. However, any function that follows the sens of the data can be used.

Example 4.3. Let

xi 0.5 0.75 1 1.5 2 2.25 2.75 3

yi -1.19 -0.45 -0.07 0.71 1.16 1.44 1.72 1.84

1. Plot these points on an orthogonal plane and observe their appearance.

2. Using the least squares method, approximate the above data by the function g(x) = a ln(x)

with a ∈ R to be determined.

Solution 4.3. We start by plotting the experimental data:

0.5 1 1.5 2 2.5 3

x

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

experimental data

Figure 4.3: Experimental Data (Example 4.3)
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4.4 Construction of the function of best fit 47

We observe that the shape of these points is like the ln function except that the graph here

is shifted to the left. So we shall approximate those data with the ln function multiplied by

a weight a. In other words, we need to find the function g(x) = a ln(x) which minimizes the

quantity:

S =
8∑
i=1

(a ln(xi)− yi)2, here 8 is the number of given points.

This amounts to find where the partial derivative ∂S
∂a

vanishes:

∂S

∂a
= 2

8∑
i=1

ln(xi)(a ln(xi)− yi) = 0.

By simplifying this equality, we get

a =

8∑
i=1

yi ln(xi)

8∑
i=1

(ln(xi))2
.

After calculations, we find

a = 1.7.

As a result, the best non-linear approximation of the above data is the function

g(x) = 1.7 ln(x).

0.5 1 1.5 2 2.5 3

x

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

experimental data
approximation y=1.7ln(x)

Figure 4.4: Non-linear approximation (Example 4.3)
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48 4. Least squares approximation

Example 4.4. Let

xi 0.2 0.5 1 1.5 2 3

yi 0.3 0.5 0.8 1 1.2 1.3

and put g(x) = a x
x+1 + b(1− e−x). Find a and b such that g(x) be the approximation of best fit

in the sens of least squares.

Solution 4.4. We need to find the function g(x) = a x
x+1 + b(1 − e−x) which minimizes the

quantity:

S =
6∑
i=1

(
a

xi
xi + 1 + b(1− e−xi)− yi

)2
.

This amounts to find where the partial derivatives ∂S
∂a

and ∂S

∂b
vanish:


∂S

∂a
= 2

6∑
i=1

xi
xi + 1

(
a

xi
xi + 1 + b(1− e−xi)− yi

)
= 0,

∂S

∂b
= 2

6∑
i=1

(1− e−xi)
(
a

xi
xi + 1 + b(1− e−xi)− yi

)
= 0.

By simplifying the above equalities, we get


a

6∑
i=1

(
xi

xi + 1

)2
+ b

6∑
i=1

xi
xi + 1(1− e−xi) =

6∑
i=1

yi

(
xi

xi + 1

)
,

a
6∑
i=1

xi
xi + 1(1− e−xi) + b

6∑
i=1

(1− e−xi)2 =
6∑
i=1

yi(1− e−xi).

After calculations, we find 
1.7558 a+ 2.2327 b = 2.9917,

2.2327 a+ 2.8413 b = 3.8066.

This implies

a = 0.3745 and b = 1.0455.

As a result, the best non-linear approximation of the above data is the function

g(x) = 0.3745 x

x+ 1 + 1.0455(1− e−x).
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Figure 4.5: Non-linear approximation (Example 4.4)

Example 4.5. Let

xi 0 1 2 3 4

yi 1.5 2.5 3.5 5 7.5

Find the exponential function g(x) = ceax which fits the above data in the least square sens.

Solution 4.5. We need to minimize the quantity

S =
5∑
i=1

(ceaxi − yi)2.

So, we look where the derivatives ∂S
∂a

and ∂S

∂c
vanish:


∂S

∂a
= 2

5∑
i=1

cxie
axi (ceaxi − yi) = 0,

∂S

∂c
= 2

5∑
i=1

eaxi (ceaxi − yi) = 0.

By simplifying the above equalities, we get



5∑
i=1

cxie
2axi =

5∑
i=1

xiyie
axi ,

5∑
i=1

ce2axi =
5∑
i=1

yie
axi .
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50 4. Least squares approximation

Clearly, the simplification of those equations is no more possible and the culculations are not

easy to do. We can use the Chapter 1: Solving nonlinear equations f(x) = 0.

Here we will proceed in another way. Instead of minimizing the distances between ceaxi and

yi, we will minimize the distances between ln (ceaxi) and ln(yi). Put

T =
5∑
i=1

(ln (ceaxi)− ln(yi))2

=
5∑
i=1

(ln(c) + axi − ln(yi))2 , (c, yi) > (0, 0).

Put ∂T
∂a

= 0 and ∂T

∂c
= 0 to get:


∂T

∂a
= 2

5∑
i=1

xi (ln(c) + axi − ln(yi)) = 0,

∂T

∂c
= 21

c

5∑
i=1

(ln(c) + axi − ln(yi)) = 0, (c, yi) > (0, 0).

Simplify the above result to find


ln(c)

5∑
i=1

xi + a
5∑
i=1

x2
i =

6∑
i=1

xi ln(yi),

ln(c)
5∑
i=1

1 + a
6∑
i=1

xi =
5∑
i=1

ln(yi).

In numbers: 
10 ln(c) + 30a = 16.29,

5 ln(c) + 10a = 6.2.

After calculations, we obtain

ln(c) = 0.462 =⇒ c = 1.5872 and a = 0.389.

As a result, the best non-linear approximation of the above data is the function

g(x) = 1.5872 e0.389x.
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Figure 4.6: Non-linear approximation (Example 4.5)

Remark 4.1. When we deal with nonlinear functions, the direct calculations seem very difficult.

In some cases, a simple change of variables makes the computations much easier: see example

4.5 for

– minimization of exponential quantity S =
n∑
i=1

(
aebx − yi

)2
which turns to minimize

T =
n∑
i=1

(ln(a) + bxi − ln(yi))2. Also

– minimising the power quantity S =
n∑
i=1

(
axbi − yi

)2
is equivalent to minimize

T =
n∑
i=1

(ln(a) + b ln(xi)− ln(yi))2 with (a, xi, yi) > (0, 0, 0); and

– minimizing the saturation-growth rate quantity S =
n∑
i=1

(
axi
b+xi
− yi

)2
is equivalent to

minimize T =
n∑
i=1

(
1
a + b

axi − yi
)2
.

4.5 Exercises

1. Use least squares regression to fit a straight line to

xi -2 -1 0 1 2

f(xi) 2 1 0 1 2

Plot the data points and the regression line to see how well the line represents the points.
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52 4. Least squares approximation

2. Fit the following data to a parabolic model y = ax2 + bx using least squares

xi 1 2 3 4 5 6 7 8

f(xi) 2.5 7 38 55 61 77 83 145

3. Find the least squares parabola y = ax2 + bx+ c that fits to the following data set:

xi 0 1 2 3 4 5

f(xi) 2.1 7.7 13.6 27.2 40.9 61.1

4. Consider the experimental points f(0) = 1, f(1) = 3 and f(2) = 7. Find the function

g(x) = a
√
|x− 1|+ bx2 that fits to the above data set.

5. Fit the following data points with the power model y = axb. Use the resulting power

equation to predict y at x = 7.

xi 0 2 4 6 9 11 12 15 17 19

f(xi) 5 6 7 6 9 8 7 10 12 12

6. Fit an exponential model to

xi 0.4 0.8 1.2 1.6 2 2.3

f(xi) 800 975 1500 1950 2900 3600

7. The following data represents the scientific model y = ax
b−x . Use the method of least squares

to find coefficients a and b of the equation.

xi 18 22 26 28 30 36 46

f(xi) 3.6 3.8 3.9 4 4.1 4.2 4.3

8. The data tabulated below can be modeled by y =
(
a+
√
x

b
√
x

)2
. Use a transformation to

linearize this equation and then employ linear regression to determine a and b. Based on

your analysis predict y at x = 1.6.

xi 0.5 1 2 3 4

f(xi) 10.4 5.8 3.3 2.4 2
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9. Let the set of points (0, 2), (1, 1), (2, 2/3), (4, 1/3) and (10, 1/10). Propose a function

that best fits these points.

10. Consider the experimental data:

xi 0.2 0.5 1 1.5 2 3

f(xi) 0.3 0.5 0.8 1 1.2 1.3

We decide to adopt the following model

g(x) = a
x

x+ 1 + b(1− e−x).

Using least squares approximation, find a and b then plot the data points and the function

g in the same plane.
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Chapter 5
Numerical integration

5.1 Introduction

Geometrically, the definite integral of a continuous function f(x) on a finite interval [a, b],

denoted by
∫ b
a f(x)dx, is the area of the closed geometric shape bounded by the abscissa axes,

the straight lines x = a and x = b, and the graph of the function f(x):

Figure 5.1: Definite integrals geometrically

Theoretically,

I :=
∫ b

a
f(x)dx = F (b)− F (a)

with F (·) is the primitive of f(·).

Problem 3. Sometimes it is not easy to find the expression of F (·). Moreover, in practice,

we usually do not have the expression of function f(·), we only have some couples of points

(xi, f(xi))i=1,...,n measured by physical experiments. Hence the notion of primitive loses its sense

and numerical methods become highly recommended.
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5.2 Rectangular rule

5.2.1 Left rectangle approximation

In this method, we draw a rectangle which its

width is b−a and its height is given by the height

of the function f at the left hand point a: f(a).

Hence

I :=
∫ b

a
f(x)dx ≈ Il := (b− a)f(a).

5.2.2 Right rectangle approximation

In same way, if we draw a rectangle which its

width is b − a and its height is given by the

height of the function f at the right hand point

b: f(b), we get

I :=
∫ b

a
f(x)dx ≈ Ir := (b− a)f(b).

5.2.3 Midpoint rectangle approximation

Similarly, if we draw a rectangle which its width

is b − a and its height is given by the height of

the function f at the midpoint a+b
2 : f(a+b

2 ), we

get

I :=
∫ b

a
f(x)dx ≈ Im := (b− a)f

(
a+ b

2

)
.

Remark 5.1. Generally, the error in midpoint rule

|Em| = |I − Im| ≤
(b− a)3

24 max
x∈[a,b]

|f ′′(x)|, f ∈ C2([a, b],R)

is smaller than the error in left rectangle rule and in right rectangle rule

|El| = |I − Il| = |Er| = |I − Ir| ≤
(b− a)2

2 max
x∈[a,b]

|f ′(x)|, f ∈ C1([a, b],R).

Accordingly, the midpoint approximation is better than the left rectangle approximation and

the right rectangle approximation. Hence in our course, we shall focus on midpoint rule only.
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56 5. Numerical integration

5.2.4 Best approximation by midpoint rule

To get a better approximation (a smaller error |Em| = |I − Im|), we start by dividing the

interval [a, b] on n subinterval with same length h = b−a
n :

[a, b] = [a, a+ h] ∪ [a+ h, a+ 2h] ∪ [a+ 2h, a+ 3h] ∪ · · · ∪ [b− h, b]

= [x0, x1] ∪ [x1, x2] ∪ [x2, x3] ∪ · · · ∪ [xn−1, xn].

Then, we apply on each subinterval [xi, xi+1] the midpoint rule (Section 5.2.3).

Figure 5.2: Best approximation by midpoint rule

In this manner we get:

I :=
∫ b

a
f(x)dx ≈ Im :=

n−1∑
i=0

hf

(
xi + xi+1

2

)
(5.1)

and

|Em| = |I − Im| ≤
(b− a)3

24 n2 max
x∈[a,b]

|f ′′(x)|, f ∈ C2([a, b],R) . (5.2)

5.3 Trapezoidal rule

Here we draw the line going throw the points

(a, f(a)) and (b, f(b)). Accordingly, we get a

trapezoid with bases f(a) and f(b) and height

b−a. Its area is considered as an approximation

of I:

I =
∫ b

a
f(x)dx ≈ It := b− a

2 (f(a) + f(b)) .
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To get a better approximation (a smaller error |Et| = |I − It|), we start by dividing the

interval [a, b] on n subinterval with same length h = b−a
n :

[a, b] = [a, a+ h] ∪ [a+ h, a+ 2h] ∪ [a+ 2h, a+ 3h] ∪ · · · ∪ [b− h, b]

= [x0, x1] ∪ [x1, x2] ∪ [x2, x3] ∪ · · · ∪ [xn−1, xn].

Then, we apply on each subinterval [xi, xi+1] the trapezoidal rule.

Figure 5.3: Best approximation by trapezoidal rule

In this manner we get:

I :=
∫ b

a
f(x)dx ≈ It := h

2

(
f(a) + f(b) + 2

n−1∑
i=1

f(xi)
)

(5.3)

and

|Et| = |I − It| ≤
(b− a)3

12 n2 max
x∈[a,b]

|f ′′(x)|, f ∈ C2([a, b],R) . (5.4)

5.4 Simpson’s rule

Now we suppose that [a, b] is divided on two
subintervals of same lenght and that f is

known in a, b and a+b
2 . Using the polynomial

interpolation (see Chapter 3), we can approxi-

mate f by a polynomial of degree 2, then we

may integrate it instead of f on [a, b].
As a result:

I =
∫ b

a
f(x)dx ≈ Is := b− a

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
.
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To get a better approximation (a smaller error |Es| = |I − Is|), we start by dividing the

interval [a, b] on n subinterval with same length h = b−a
n :

[a, b] = [a, a+ h] ∪ [a+ h, a+ 2h] ∪ [a+ 2h, a+ 3h] ∪ · · · ∪ [b− h, b]

= [x0, x1] ∪ [x1, x2] ∪ [x2, x3] ∪ · · · ∪ [xn−1, xn].

Important 3. We have to make sure that n (the number of subintervals) is an even
number (2, 4, 6, . . . )

Then, we apply on each two subintervals [xi, xi+1] ∪ [xi+1, xi+2] the Simpson’s rule.

Figure 5.4: Best approximation by Simpson’s rule

In this manner we get:

I :=
∫ b

a
f(x)dx ≈ Is := h

3

f(a) + f(b) + 2
n
2−2∑
i=1

f(x2i) + 4
n
2−1∑
i=0

f(x2i+1)

 (5.5)

and

|Es| = |I − Is| ≤
(b− a)5

180 n4 max
x∈[a,b]

|f (4)(x)|, f ∈ C4([a, b],R) . (5.6)

5.5 Gaussian quadrature

Suppose that the function f(·) is known in m noed: x1 = a, x2, · · · , xm = b. To approximate

I =
∫ b

a
f(x)dx with Gaussian rule, we first need to make the following changing of variables:

x = b− a
2 t+ b+ a

2 . (5.7)

Hence

a = −1, b = 1, dx = b− a
2 dt and f(x) = f

(
b− a

2 t+ b+ a

2

)
.
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Accordingly:

I =
∫ b

a
f(x)dx =

∫ 1

−1

b− a
2 f

(
b− a

2 t+ b+ a

2

)
dt =

∫ 1

−1
g(t)dt.

Next, we can approximate the wanted integral by the formula

I =
∫ b

a
f(x)dx =

∫ 1

−1
g(t)dt ≈ Ig =

k∑
i=1

ωig(ti) (5.8)

with g(t) = b−a
2 f

(
b−a

2 t+ b+a
2

)
, k chosen from 1 to 2m − 1 and ωi and ti taken from the next

table:

k i ti ωi
1 1 t1 = 0 ω1 = 2
2 1 t1 = −1√

3 = −0.5773502691896257 ω1 = 1
2 t2 = 1√

3 = 0.5773502691896257 ω2 = 1

3 1 t1 = −
√

3√
5 = −0.7745966692414834 ω1 = 5

9 = 0.5555555555555556
2 t2 = 0 ω2 = 8

9
3 t3 =

√
3√
5 = 0.7745966692414834 ω3 = 5

9 = 0.5555555555555556
4 1 t1 = −0.3399810435848563 ω1 = 0.6521451548625464

2 t2 = 0.3399810435848563 ω2 = 0.6521451548625464
3 t3 = −0.8611363115940526 ω3 = 0.3478548451374476
4 t4 = 0.8611363115940526 ω4 = 0.3478548451374476

5 · · · · · · · · ·

Table 5.1: Gaussian quadrature noeds and weights

Important 4. Before proceeding with Table 5.1, we have to make sure that the inte-
gral on [a, b] is transformed by (5.7) to an integral on [−1, 1].

The error in the Gaussian quadrature rule is given by:

|Eg| = |I − Ig| ≤
(b− a)2m+1(m!)4

[(2m)!]3(2m+ 1) max
x∈[a,b]

|f (2m)(x)|. (5.9)

5.6 Order of precision

An integration method is said to be of order k if its error is null for all function of type

polynomial of degree k. Hence, by observing the error formulas in Remark 5.1 and inequalities

(5.2), (5.4), (5.6) and (5.9), we conclude that:

– The right rectangle approximation and the left rectangle approximation are of order 0.

This is why we did not focus on them in our lecture.
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– The trapezoidal rule is of order 1.

– The midpoint rule is of order 1 too but it is better than the trapezoidal one (24 in the

denominator is better than 12).

– The Simpson’s rule is of order 3 but it is applied only when the number of subintervals is

even.

– The Gaussian quadrature formula is of order 2m − 1 with m is the number of noeds.

However, it is applied only on [−1, 1], hence the changing of variables (5.7) is required.

5.7 Exercises

Exercise 5.1. Solve the exercise in Radian
Consider the function f(x) = e(sin(x)).

1. By employing the midpoint rule and the trapezoidal rule:

– Compute numerically the integral
∫ 5

0
f(x)dx by dividing the interval [0, 5] into n = 5

equally sized intervals.

– Compute the absolute error of approximation.

– Estimate the minimum number of subintervals needed to approximate the above integral

with an error magnitude of less than 0.01.

2. Redo the exercise using the Simpson’s rule by taking n = 4.

3. Apply the Gaussian method to approximate
∫ 5

0
f(x)dx by taking n = 2 then n = 3.

Hint: 1. Use inequalities (5.2) and (5.4). 2. Use inequality (5.6).

Exercise 5.2.

1. We propose to approximate the integral

I =
∫ 4

2

1
x− 1 dx = log(3) = 1.098612289

by integration methods of midpoint rectangular rule, trapezoidal rule and Simpson’s rule

for different numbers of subintervals n of [2, 4]. Give these approximations by filling in the

table below:

n

midpoint

rectangular rule trapezoidal rule Simpson’s rule

1

2

3

4
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2. Estimate the minimum number of subintervals needed to approximate the integral I with

an error less than 10−8 using the above three methods.

3. Use the Gaussian rule with n = 2 then with n = 3 to estimate I.

Hint: This exercise helps you rank integration methods according to their speed
and accuracy.

Exercise 5.3.
Consider the experiment measurements:

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f(x) 1 0.99 0.96 0.914 0.852 0.779 0.698 0.613 0.527 0.445

1. Estimate the integral I =
∫ 0.9

0
f(x)dx using the trapezoidal rule.

2. Can we estimate I using the midpoint rule? Justify your answer.

3. Can we estimate I using the Simpson’s rule? Justify your answer.

4. Add the point (1, 0.368). Estimate
∫ 1

0
f(x)dx using all the above mentioned methods.

5. Can we find an upper bound for the error in estimating I on the interval [a, b] = [0, 1]?

Hint: 5. We do not know the explicit formula of function f (hence of its derivatives),
so we need to approximate it first either by using the polynomial interpolation (see
Chapter 3) or by using the least squares method (see Chapter 4).

Exercise 5.4.
A rocket is launched vertically from the ground and the acceleration γ is measured during the

first 80 seconds:

t(in s) 0 10 20 30 40 50 60 70 80

γ(in m/s2) 30 31.63 33.44 35.47 37.75 40.33 43.29 46.70 50.67

Estimate the speed V of the rocket at time t = 80s using the trapezoidal rule then using

the Simpson’s rule.

Hint: V (t) = V (0) +
∫ t

0
γ(s)ds.

Exercise 5.5.
Estimate the minimum number of subintervals needed to approximate the integral

∫ π

−π
cos(x)dx

with an error magnitude of less than 10−3 using the Simpson’s rule.

Hint: Use inequality (5.6) and remember Important 3.

Exercise 5.6.
Consider the integral I =

∫ 1

0
f(x)dx with f(x) =

√
1 + 2x.
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1. Calculate the exact value of I.

2. Calculate the approximated value of I using the Gaussian rule with three ordinates (n = 3).

3. Find an upper bound of the error in estimating I using the Gaussian rule with n = 3.

Hint: 3. Use inequality (5.9) with max
x∈[0,1]

|f (6)(x)| = 945.

Exercise 5.7.
Let the integral I =

∫ 2
1

1
xdx.

1. Evaluate numerically the above integral using the trapezoidal rule with step size h = 1
3 .

2. Calculate the exact value of I.

3. – Why is the numerical value estimated in Question 1. great than ln(2)?

– Is this right for any step size h chosen?

– Propose another function such that the value of estimated integral using trapezoidal

rule is always great than the exact value of the integral.

4. Determine a value of h such that the Simpson’s rule will approximate I with an error of

no more than 10−4.

Hint: 3. Check the convexity of f either by verifying the sign of f ′′ or by drawing
the graph of f on [1, 2]. 4. Recall that h = b−a

n .

Exercise 5.8.
Let the integral I =

∫ π

0

sin(x)
x

dx. Approximate I using the trapezoidal rule with an error less

than 10−2.

Hint: We have max
x∈[0,π]

∣∣∣∣( sin(x)
x

)′′∣∣∣∣ ≤ 1
3 and lim

x→0
sin(x)
x = 1.
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Chapter 6
Solving differential equations: Cauchy

problems

We call “a problem with initial condition”, “an initial value problem” or “a Cauchy prob-

lem” every differential equation of type:
y′(t) = f(t, y(t)), ∀t ∈ [a, b],

y(a) = y0
(6.1)

where f : [a, b]× R→ R is a nonlinear function and y(a) = y0 is a given “initial condition”.

A common sufficient condition for problem (6.1) to admit a unique solution y(·) is that

f(t, y) is k−Lipschitz continuous with respect to the second variable, that is to say, there exists

a constant k ≥ 0 such that:

∀t ∈ [a, b], ∀(y1, y2) ∈ R2, |f(t, y1)− f(t, y2)| ≤ k|y1 − y2|.

In this chapter, we suppose that problem (6.1) admits a unique solution y(·) ∈ R. However,

we suppose that (for some raison) we can not determine the explicit formula of that solution.

Hence, we approach it (the solution of problem (6.1)) using some numerical methods.

First, we divide the interval [a, b] into n subintervals with equal-length h
(
h = b−a

n

)
. We

denote

t0 = a, t1 = a+ h, t2 = a+ 2h, · · · , tn = b.

According to the initial condition, we know that y0 := y(t0) is given. The purpose in this chapter

is to estimate y1 := y(t1) from y0, then to estimate y2 := y(t2) from y1, and so on. This approach

is called “a one step method”.
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6.1 Euler’s method

By integrating y′(t) = f(t, y(t)) from ti to ti+1, for any i from 0 to n− 1, we get

y(ti+1)− y(ti) =
∫ ti+1

ti

f(t, y(t))dt.

Applying left rectangle approximation (see Chapter 5-Section 5.2.1), we get

y(ti+1)− y(ti) = (ti+1 − ti) f(ti, y(ti))

simply denoted:

yi+1 − yi = hf(ti, yi).

This is called “Euler’s explicit formula”:


yi+1 = yi + hf(ti, yi),

ti+1 = ti + h, i = 0, · · · , n− 1.
(6.2)

Similarly, by applying right rectangle approximation (see Chapter 5-Section 5.2.2), we get

y(ti+1)− y(ti) = (ti+1 − ti) f(ti+1, y(ti+1))

simply denoted:

yi+1 − yi = hf(ti+1, yi+1).

This is called “Euler’s implicit formula”:


yi+1 = yi + hf(ti+1, yi+1 ),

ti+1 = ti + h, i = 0, · · · , n− 1.
(6.3)

Remark 6.1. Observe that in Euler’s implicit formula, the term yi+1, which is unknown, figures

in right hand side as well as left hand side of the algorithm. This requires a simplification of the

formula before using it.

Example 6.1. Let 
y′(t) = t+ y(t), ∀t ∈ [0, 1],

y(0) = 1.

Use Euler’s explicit formula and Euler’s implicit formula to approximate y(t) on [0, 1] with

h = 0.1.
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Knowing that the exact solution of the above problem is y(t) = 2et − t − 1, compare the

approximated results with the exact ones.

Solution 6.1. From the question we know that we have to fullfill the following table (yi-exact

is calculated by the formula y(t) = 2et − t− 1):

ti 0 0.1 0.2 0.3 0.4 0.5

yi-approximated 1

yi-exact 1 1.110342 1.242806 1.399718 1.583649 1.797443

ti 0.6 0.7 0.8 0.9 1

yi-approximated

yi-exact 2.044238 2.327505 2.651082 3.019206 3.436564

We start by applying Euler’s explicit formula (6.2). We have:

yi+1 = yi + hf(ti, yi)

= yi + 0.1 (ti + yi)

= 1.1 yi + 0.1 ti.

Hence

ti 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

yi-approximated 1 1.1 1.22 1.362 1.5282 1.72102 1.943122 2.197434

ti 0.8 0.9 1

yi-approximated 2.487178 2.815895 3.187485

Next, we apply Euler’s implicit formula (6.3). We have:

yi+1 = yi + hf(ti+1, yi+1)

= yi + 0.1 (ti+1 + yi+1)

= yi + 0.1 ti+1 + 0.1 yi+1.

Hence

(1− 0.1) yi+1 = yi + 0.1 ti+1

which implies

yi+1 = yi + 0.1 ti+1
0.9 .
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Accordingly, we get

ti 0 0.1 0.2 0.3 0.4 0.5

yi-approximated 1 1.122222 1.269136 1.443484 1.648316 1.887018

ti 0.6 0.7 0.8 0.9 1

yi-approximated 2.163353 2.481503 2.846115 3.262350 3.735944

Observe that in both approaches, the error between the exact value and the approximated value

at t = 1 is not negligible !

Remark 6.2. Euler methods are of order one, i.e., the error is important.

6.2 Crank Nicolson’s method

By integrating y′(t) = f(t, y(t)) from ti to ti+1, for any i from 0 to n− 1, we get

y(ti+1)− y(ti) =
∫ ti+1

ti

f(t, y(t))dt.

Applying trapezoidal rule (see Chapter 5-Section 5.3), we get

y(ti+1)− y(ti) = ti+1 − ti
2 (f(ti, y(ti)) + f(ti+1, y(ti+1)))

simply denoted:

yi+1 − yi = h

2 (f(ti, yi) + f(ti+1, yi+1)) .

This is called “Crank Nicolson’s formula”:


yi+1 = yi + h

2
(
f(ti, yi) + f(ti+1, yi+1 )

)
,

ti+1 = ti + h, i = 0, · · · , n− 1.
(6.4)

This algorithm is of order two (better than Euler’s methods). However, it is an implicit formula.

One way to get an algorithm of order two with implicit formula is the following:

6.3 Runge Kutta second order formula


k = yi + hf(ti, yi),

yi+1 = yi + h

2
(
f(ti, yi) + f(ti+1, k )

)
,

ti+1 = ti + h, i = 0, · · · , n− 1.

(6.5)
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This is called “Runge Kutta second order formula” or “modified Euler formula”.
There are other ways to get implicit second order formulas. For example, the first-order

Taylor polynomial of y(ti+1) gives:

y(ti+1) = y(ti + h) = y(ti) + hy′(τ), τ ∈ [ti, ti+1].

If we choose τ to be the midpoint of [ti, ti+1]: τ = ti+ti+1
2 = ti + h

2 , we get

y(ti+1) = y(ti) + hy′
(
ti + h

2

)
.

Observe (from (6.1)) that

y′
(
ti + h

2

)
= f

(
ti + h

2 , y
(
ti + h

2

))
.

Then

y(ti+1) = y(ti) + hf

(
ti + h

2 , y
(
ti + h

2

))
.

To simplify this expression, we approximate y
(
ti + h

2

)
by the Euler’s explicit method as follows:

y

(
ti + h

2

)
= y(ti) + h

2 f(ti, y(ti)).

As a result, we have: 

k = h

2 f(ti, yi),

yi+1 = yi + hf

(
ti + h

2 , yi + k

)
,

ti+1 = ti + h, i = 0, · · · , n− 1.

(6.6)

This is called “Runge Kutta second order formula” or “Lax-Wendroff formula” or

“Midpoint formula”.
Another version of Runge Kutta second order formula is the following:



k1 = hf(ti, yi),

k2 = hf (ti+1, yi + k1) ,

yi+1 = yi + 1
2 (k1 + k2) ,

ti+1 = ti + h, i = 0, · · · , n− 1.

(6.7)
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6.4 Runge Kutta fourth order formula

There exists another Runge Kutta’s formula which is of order four hence it is more precise

and much used in applications:



k1 = hf(ti, yi),

k2 = hf

(
ti + h

2 , yi + k1
2

)
,

k3 = hf

(
ti + h

2 , yi + k2
2

)
,

k4 = hf (ti + h, yi + k3) ,

yi+1 = yi + 1
6 (k1 + 2k2 + 2k3 + k4) ,

ti+1 = ti + h, i = 0, · · · , n− 1.

(6.8)

6.5 Exercises

Exercise 6.1.
Consider the following initial value problem:

ẋ(t) = t+ 1− x(t), ∀t ∈ [0, 1],

x(0) = 1.
(6.9)

Find x(1) by using Euler (explicit and implicit) methods, then Runge-Kutta formulas (of order

2 and 4). Take h = 0.2.

Knowing that the exact solution is x(t) = e−t + t, compare the exact value of x(1) with the

approximated ones. Comment on the results.

Exercise 6.2.
Given: 

ẋ(t) = (t+ 1)3 + 2x(t)
t+ 1 , ∀t ∈ [0, 0.04],

x(0) = 3
2 .

1. Show that the above equation admits a uniqe solution.

2. Determine the values of xi at points ti by the Runge-Kutta fourth order method with

h = 0.01.

3. Determine by the interpolation method of Newton (finite differences) the interpolating

polynomial of x(t). Deduce x(0.026).

4. Calculate
∫ 0.04

0 x(t)dt by the trapezoidal method.
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Hint: 1. Prove that f(t, x) is Lipschitz continuous. 3. See Chapter 3. 4. See
Chapter 5.

Exercise 6.3.
Let the following Cauchy problem:


x′′(t)− 1

4x(t) = 0, ∀t ∈ [0, 0.2],

x(0) = 1 and x′(0) = −0.5.

1. Suppose that y(t) = (x(t), ẋ(t))T . Rewrite the above equation in the form:


ẏ(t) = F (t, y(t)), ∀t ∈ [0, 0.2],

y(0) = (1,−0.5)T .

2. Apply the Euler (explicit and implicit) methods, then the Runge-Kutta formulas (of order

2 and 4) to find the approximate value of y for t = 0.2 in steps of h = 0.1.

Hint: From y(t) =

x(t)

x′(t)

 we have y′(t) =

x′(t)
x′′(t)

 =

 x′(t)
1
4x(t)

. Hence

F (t, y(t)) = F

t,
x(t)

x′(t)


 =

 x′(t)
1
4x(t)

 .
In this manner, the Euler explicit algorithm becomes:

yi+1 = yi + hF (ti, yi)

equivalently xi+1

x′i+1

 =

xi
x′i

+ 0.1

 x′i

1
4xi

 .

Using the initial condition

x0

x′0

 =

 1

−0.5

, one can easily fullfill the following table:

ti 0 0.1 0.2

xi 1

x′i −0.5
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Exercise 6.4.
Let the following initial value problem:

x′′(t) = −x(t) + 2t, ∀t ∈ [0, 0.4],

x(0) = 0 and x′(0) = −1.

Apply the Runge-Kutta second order (modified Euler) formula to find the approximate value of

x for t = 0.4. Take h = 0.2.

Hint: Put y(t) =

x(t)

x′(t)

 then y′(t) =

x′(t)
x′′(t)

 =

 x′(t)

−x(t) + 2t

. Hence

F (t, y(t)) = F

t,
x(t)

x′(t)


 =

 x′(t)

−x(t) + 2t

 .
In this manner, the modified Euler’s formula becomes:


k = yi + hF (ti, yi),

yi+1 = yi + h

2 (F (ti, yi) + F (ti+1, k)) ,

ti+1 = ti + h, i = 0, · · · , n− 1.

equivalently 

 k1

k2

 =

xi
x′i

+ 0.2

 x′i

−xi + 2t


xi+1

x′i+1

 =

xi
x′i

+ 0.2
2

 x′i + k2

−xi + 2t+ (−k1 + 2ti+1)


Simplify more the above equations then make the necessary calculus.

Exercise 6.5.
Solve 

x′′′(t) = 3x(t), ∀t ∈ [0, 1],

x(0) = 0, x′(0) = −1 and x′′(0) = −1

by the modified Euler’s method and obtain x at t = 0.2, 0.4, 0.6, 0.8 and 1.

Hint: Put y(t) =


x(t)

x′(t)

x′′(t)

 and continue like the previous exercise.
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Exercise 6.6.
Choose one of the methods you know to solve one of the following problems:

x′(t) = t2 + x(t), ∀t ∈ [0, 0.3],

x(0) = 1, h = 0.1.


x′(t) = −x(t) + 2t, ∀t ∈ [0, 1],

x(0) = 1, h = 0.2.
x′(t) = −x(t) + e−t + et, ∀t ∈ [0, 1],

x(0) = 1
2 , h = 0.1.


x′(t) = e−t − 2x(t), ∀t ∈ [0, 1],

x(0) = 1, h = 0.2.
x′(t) = sin(t)− x(t), ∀t ∈ [0, 1],

x(0) = 1, h = 0.1.


x′(t) = 36x(t)− 37e−t, ∀t ∈ [0, 1],

x(0) = 1, h = 0.2.
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