1. 2nd Order Differential Equations

Definition : A second-order linear differential equation with constant coefficients has the form a.y'' + by' + c.y = f(t) (E)

Where : a, b and c are a reals constants with $a \neq 0$, $\forall t \in \mathbb{R}$.

And f(t) is the second member.

if f(t) = 0, then (E) becomes an equation without a second member (EWSM), called a *linear homogeneous equation*, denoted by(E_h) :

$$a.y'' + by' + c.y = 0$$
 (E_h)

Resolution method:

The general solution y of (E) is the sum of the homogeneous solution y_h of (E_h) and a particular solution $(y_p)of$ (E): such that

$$y = y_h + y_p$$

2. How to find y_h ?

Let the homogeneous equation be

$$a. y^{\prime\prime} + by^{\prime} + c. y = 0$$

- a) Write the caracteristic equation: $a \cdot r^2 + b \cdot r + c = 0$.
- b) Find the root *r* according to the sign of Δ given in the following table where $\Delta = b^2 - 4ac$: *hier a* = 1

Sign of Δ	The roots : r_i	The soltion y_h
$\Delta > 0$	There is tow roots $r_1 = \frac{-b - \sqrt{\Delta}}{2a}$	$y_{h} = C_1 e^{r_1 \cdot t} + C_2 e^{r_2 \cdot t}$
	$r_2 = \frac{-b + \sqrt{\Delta}}{2a}$	
$\Delta = 0$	$r_0 = \frac{-b}{2a}$	$\mathbf{y}_{h} = (C_1 t + C_2) e^{r_0 \cdot t}$

1. How to find the particular solution y_p ?

We determine the particular solution y_p of (E1), according to the form of the second member f(t), and using the identification method of coefficient, the following table shows how to choose the form of y_p

f(t) takes the form :	Ур
$f(t) = P(t)e^{\alpha t} \text{ with } P(t) \text{ is a polynomial of} $ degree <i>n</i> , where α is a real number, and <i>m</i> is not a root of P	$y_p = Q(t)e^{\alpha t}$ Q(t) is a polynomial $deg(Q) = n$
$f(t) = P(t)e^{\alpha t}$ with $P(t)$ is a polynomial of degree 2, α is a real number, and m is a simple root	$y_p = Q(t) \cdot t \cdot e^{\alpha t}$
$f(t) = P(t)e^{\alpha t}$ with $P(t)$ is a polynomial of degree 2, α is a real number, and m is a double root	$y_p = Q(t) \cdot t^2 \cdot e^{\alpha t}$

3. Donne la solution finale $y(t) = y_h + y_p$.

Exemple : Solve the equation (E) given by $y'' + 2y' = 2e^{-2x}$ (E)

Solution :

Find the homogeneous solution of y" + 2y' = 0 The characteristic equation associate to (E) is: r² + 2r = 0 Wich has tow roots : r₁ = 0 and r₂ = -2 Then, the solution y_h is y_h = k₁ + k₂e^{-2x} where k₁and k₂ ∈ ℝ
Find the particular solution of (E)

Hier
$$\alpha = -2$$
, then y_p tak the form

$$y_p = kxe^{-2x}$$
 , $k \in \mathbb{R}$

Then the derivative of y_p gives

$$y'_p = ke^{-2x} - 2kxe^{-2x}$$
 et y_p " = $-4ke^{-2x} + 4kxe^{-2x}$

By substituting into (E)

$$y_p'' + 2y'_p = -4ke^{-2x} + 4kxe^{-2x} + 2ke^{-2x} - 4kxe^{-2x} = -2ke^{-2x} = 2e^{-2x}$$

Using the identification method, it follow :

$$-2k = 2 \Rightarrow k = -1$$

Then,

$$y_p = -xe^{-2x}$$

Finally, the general solution of (E) is

$$y = y_h + y_p = k_1 + k_2 e^{-2x} - x e^{-2x}$$

where k_1 and $k_2 \in \mathbb{R}$