Three-phase asynchronous motor

The term **asynchronous** comes from the fact that the speed of these machines **is not necessarily proportional** to the <u>frequency</u> of the currents flowing through them.

Originally it was a machine used as an engine only, which is what we are studying here.

Constitution

The inductor is located at the stator, the armature at the rotor. **There is no connection between the <u>stator</u> and the <u>rotor</u>.**

- The stator, identical to that of the synchronous machine, is connected to the network or to a speed variator.

- The <u>rotor</u> is made up of short-circuited conductors.

There are two types of rotors:

- "Squirrel cage" rotor (robust and inexpensive): made up of identical metal bars, parallel to the axis of rotation. On each side, the ends of these bars are joined together by low-resistance metal rings. The assembly therefore forms a cage called: "squirrel cage"

- Wound rotor

To obtain a rotating magnetic field, the three coils fixed in the stator, geometrically offset by 120° , are traversed by alternating currents of pulsation ω also phase-shifted by 120° .

The currents being alternating, we will have periodically for each coil the north and south poles of the magnetic field which will reverse:

Note: To change the direction of rotation, simply swap 2 phases.

The rotation frequency of this field is imposed by the frequency f ($\omega = 2\pi f$) of the stator currents,

that is, its rotation speed is proportional to the frequency of the power supply.

The speed **n** s of this rotating field is called *the synchronous speed*

The rotor winding is therefore subjected to flux variations (of the rotating stator magnetic field). An induced <u>electromotive force</u> appears which creates rotor currents. These induced currents are responsible for the appearance of a <u>torque</u> which tends to set the rotor in motion in order to oppose the flux variation: <u>Lenz's law</u>. The rotor therefore begins to turn in an attempt to follow the stator field.

Each stator coil has two magnetic poles = 1 dipole; therefore the number of dipoles p = 1But we can build coils with 2 pairs of poles (p = 2) or more...

 Ω s being the rotational pulsation of the magnetic field = synchronism pulsation = 2π .n s So generally speaking $\omega = p \Omega s = 2\pi$.f = p. 2π .n s from which n s (tr/s) = f (Hz) / p If we call Ω the rotor rotation speed in rd/s = 2π .n with n = rotor rotation speed in rpm

Note: no-load $\Omega = \Omega_s$; Load $\Omega < \Omega_s$ the machine operates as a motor Slide

The g slip measures the relative deviation between the machine rotation speed and the synchronous speed:

g = $(n_s - n)/(n_s = (\Omega s - \Omega))/(\Omega s)$ from which $n = n_s.(1-g)$

• Example: Consider a three-phase network (f = 50 Hz) supplying a motor with three pairs of poles (p = 3) 6 poles:

n $_{\rm S}$ = f/p 50/3 = 16.7 rpm = 1000 rpm At rated load, this engine runs at 950 rpm: g $_{\rm N}$ = (1000 - 950)/1000 = 0.05 = 5% No load (no load), **n** \approx 1000 rpm: g no load \approx 0% At startup (n = 0): g = 1 (100%) • Notes In normal operation, slip does not exceed a few percent.

When no-load, an asynchronous motor runs at almost synchronous speed.

Mechanical characteristic Cu(n)

The **characteristic** of the torque that this machine provides shows a maximum called **torque jerk** at start-up (annoying for the driven mechanics) which corresponds to a **peak intensity** of 5 to 10 times In harmful to the power supply network. It will therefore be necessary to reduce it. To do this, a **starting system is used** which will adapt the voltages applied to the machine in order to limit this current.

Example: starting under reduced voltage, or by autotransformer, or star-delta.....

P₁ = Input electrical power (absorbed): = $P_a = UI \sqrt{3} \cos \varphi$

U: phase-to-phase voltage in volts; I: intensity in a line wire, in amperes

 $P_{tr} =$ electromagnetic power transmitted from the stator to the rotor = $P_{a} -$ stator losses = C $_{m} \Omega_{s}$

C $_m$: electromagnetic torque, Ω_s = synchronous speed of the magnetic field in radians per second

P 2 = Mechanical power output = P $_{u}$ = C $_{u}$. Ω = C $_{u}$ 2 π n = mechanical power in Watt

Cu: useful engine torque in newton meters

 Ω : rotor speed in radians per second.

• Joule losses at the rotor: $P_{Jr} = P_{tr} - C_m$. $\Omega = C_m (\Omega_s - \Omega) = g C_m \Omega_s$; $P_{Jr} = g P_{tr}$ • iron losses are mainly located in the stator (they are negligible in the rotor).

 $P_2 = P_u = C_u \Omega = P_a$ - Losses

Rendement
$$\eta = \frac{P_u}{P_a} = \frac{\sqrt{3}UI\cos\phi - Pertes}{\sqrt{3}UI\cos\phi} = \frac{Cu\ \Omega}{Cu\ \Omega + Pertes} = \frac{Cu\ \Omega}{\sqrt{3}UI\cos\phi}$$

Losses = Pferstator + PJstator + PJrotor + Pmechanics

The only disadvantage of the asynchronous motor is the reactive energy, always consumed to magnetize the air gap.

Exercises on the asynchronous motor

Exercise 1

An asynchronous motor runs at 965 rpm with a slip of 3.5%.

Determine the number of poles of the motor knowing that the network frequency is f = 50 Hz.

Correction 1

 $g = (n_s - n)/(n_s = hence n = n_s.(1-g) n_s = n/1-g=965/(1-0.035) = 1000$

Number of pole pairs: p = f / n s = 50 / (1000 / 60) = 3 6 poles Exercise 2

The windings of a three-phase asynchronous motor are connected in delta.

The resistance of a winding is $R = 0.5 \Omega$, the line current is I = 10 A.

Calculate the Joule losses in the stator.

Correction 2

Joule losses in the stator $3RJ^2 = RI^2 = 0.5 \times 10^2 = 50 W$

Exercise 3

The voltages indicated on the nameplate of a three-phase motor are: 400 V / 690 V 50 Hz

(this means that the nominal voltage across a winding is 400 V).

1- What should be the motor coupling on a 230 V / 400 V three-phase network?

2- And on a three-phase 400 V / 690 V network?

Correction 3

400V/690V (This means that the rated voltage across one winding is 400V and the rated voltage across two windings is 690V both voltages are three phase)

230/400 V network 230 single voltage 400 compound voltage

Triangle coupling

2-

400/690 V network 400 single voltage 690 compound voltage

Star coupling

Exercise 4

The nameplate of the asynchronous motor of a milling machine bears the following indications: $3 \sim 50$ Hz

- Δ 220 V 11 AY 380 V 6,4 A1455 rpm cos $\phi = 0.80$
- 1- The motor is powered by a three-phase 50 Hz network, 380 V between phases.
- What should be the coupling of its windings for it to operate normally?
- 2- What is the number of poles of the stator? (we give synchronism speed: 1500 rpm)
- 3- Calculate the nominal slip (in %).
- 4- A no-load test under nominal voltage gives:
- absorbed power: Pa = 260 W line current intensity: I =3,2 A
- Mechanical losses are estimated at 130 W.
- Hot measurement of the resistance of a stator winding gives $Rs=0.65\;\Omega$.
- Deduct the iron losses.
- 5- For nominal operation, calculate:
- Joule effect losses at the stator Joule effect losses at the rotor
- the yield the useful torque Cu

Correction 4

1- The motor is powered by a three-phase 50 Hz network, 380 V between phases. Compound voltage then Star coupling because the Star voltage is 380 V. p = f/n s $n_s = 1500 p = 50 / (1500 / 60) = 2 \frac{4 \text{ poles}}{4 \text{ poles}}$ 4 poles

3- the nominal slip $\frac{1500 - 1455}{1500} = 3\%$

4- Power balance:

Joule effect losses at the stator: $3 \times 0.65 \times 3.2^2 = 20$ W 3RsI² I no-load Losses due to Joule effect at the rotor: negligible when empty Iron losses: 260 - (130 + 20 + 0) = 110 W

5- Joule effect losses at the stator $3R_{sI}^2 = 3 \times 0.65 \times 6.4^2 = 80 \text{ W}$ Joule effect losses at the rotor Power consumption: $\mathbf{P}_a = \mathbf{UI} \sqrt{3} \cos \varphi = \sqrt{3} \times 380 \times 6.4 \times 0.80 = 3370 \text{ W}$ Power transmitted to the rotor $\mathbf{P}_{tr} := \mathbf{P}_a - \text{stator losses} = 3,370 - (80 + 110) = 3,180 \text{ W}$ Joule losses at the rotor : $\mathbf{P}_{Jr} = \mathbf{g} \mathbf{P}_{tr} = 3 180 \times 0.03 = 95 \text{ W}$

Useful power: $P_{tr} - Losses$ (rotor joule losses + mechanical losses) = 3180 - (130 + 95) = 2,955 W

<mark>or</mark> = Useful power = <mark>P _a - total losses = 3,370 - (130 + 95+80 + 110)=</mark> 2,955 W

- the yield Yield: 2,955 / 3,370 = 87.7%

 $\frac{2955}{1455 \times \frac{2\pi}{60}} = 19,4 \text{ Nm}$

- the useful couple Cu

Exercise 5

A 220 V / 380 V four-pole three-phase asynchronous squirrel-cage motor is supplied by a 220 V network between phases, 50 Hz. A no-load test at a rotation frequency very close to synchronism gave for the absorbed power and the power factor: Pv = 500 W and $\cos \varphi v = 0.157$.

A load test gave: - intensity of absorbed current: I = 12,2 A- slip: g = 6% - absorbed power: Pa = 3340 W.

The resistance of a stator winding is $Rs = 1.0 \Omega$.

- 1-1- Which of the two voltages indicated on the nameplate can a stator winding withstand?
- 1-2- Deduce the coupling of the stator on the 220 V network.
- 2- For no-load operation, calculate:
- 2-1- the rotation frequency nv assumed to be equal to the synchronism frequency
- 2-2- the intensity of the current in line Iv
- 2-3- the value of Joule losses in the stator PJs \boldsymbol{v}
- 2-4- the value of the losses in the stator iron pfs, assumed to be equal to the mechanical losses pm
- 3- For operation under load, calculate:
- 3-1- the rotation frequency (in rpm)
- 3-2- the power transmitted to the rotor Ptr and the moment of the electromagnetic torque Cem
- 3-3- the useful power Pu and the efficiency $\boldsymbol{\eta}$

Correction 5

1-1-220 V 1-2- Triangle coupling 2-2-1- the rotation frequency $n_v = 1500$ rpm

$$I_{v} = \frac{P_{v}}{\sqrt{3}U\cos\varphi_{v}} = \frac{500}{\sqrt{3} \cdot 220 \cdot 0.157} = 8.36 \text{ A}$$

2-2- the intensity of the current in line

2-3- the value of Joule losses in the stator p $_{J_{sv}}$ 3 R J_v^2 = R I_v^2 = 70 W (couplage triangle) 2-4-Power balance: $P_{fs} + p_m = 500 - 70 = 430 \text{ W}$ $P_{fs} = p_m = 430 \text{ W} / 2 = 215 \text{ W}$

3-3-1- the rotation frequency (in rpm) 1500(1-0.06) = 1410 rpm

3-2-P tr = 3340 - 150 - 215 = 2975 W

$$C_{em} = \frac{P_{u}}{\Omega_{s}} = \frac{2975}{1500\frac{2\pi}{60}} = 18,95 \text{ Nm}$$

3-3- the useful power P $_u$ and the efficiency η $P_u = 2975 - 2975 \times 0.06 - 215 = 2580 W$ $\eta = 2580 / 3340 = 77.3\%$

$$C_u = \frac{P_u}{\Omega} = \frac{2580}{1410\frac{2\pi}{60}} = 17,5 \text{ Nm}$$

3-4- the moment of the useful couple 60 4- C u = 0 Nm at n = 1500 rpm From where: C u = -0.1944 n + 291.7 At equilibrium: C $_{u} = C r 8 \cdot 10^{-6} n^{2} = -0.1944 n + 291.7$ Solving this second degree equation gives: n = 1417 rpm Calculate the useful power of the motor. $C_r = C_u = 8 \cdot 10_{-6} \cdot 1417^2 = 16.1 \text{ Nm P}_u = 2385 \text{ W}$