Modélisation et Commande des Robots Manipulateurs

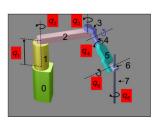
Dr Bensalah Choukri

Université Abou Bekr Belkaid Faculté de Technologie Laboratoire d'Automatique

Chapitre I: Modélisation Géométrique des bras manipulateurs

Introduction

Ce chapitre est dédié à la construction de modèles géométriques direct. La position et l'orientation (pose) de l'organe terminal sont reliées aux variables articulaires $q=(q_1,q_2,...,q_n)$ de la structure mécanique par rapport à un repère de référence situé à la base du robot(le plus souvent une des deux extrémités: la base ou l'organe terminal). Pour se faire, deux approches vont être utilisés; l'approche géométrique et la convention de Denavit-Hartenberg. Par la suite, nous nous intéresserons au problème inverse : comment exprimer les variables articulaires en fonction de la pose de l'organe terminal.

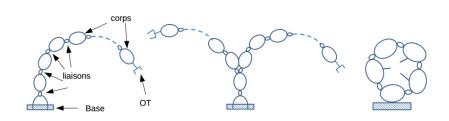


Types de bras manipulateurs considérés

On ne considère ici que les systèmes mécaniques composés de chaînes cinématiques polyarticulées ouvertes, appelés bras manipulateurs série.

Description des chaînes cinématiques

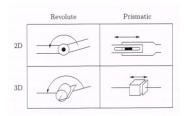
La chaîne cinématique structure le système mécanique articulé et correspond aux divers corps et liaisons (ou articulations) entre les corps. Les liaisons sont passives ou actives (motorisées). La chaîne peut être ouverte (robot série), multiple ou fermée.



Liaison entre deux corps

Une liaison entre deux corps est une relation de contact entre deux solides. Elle définie aussi le **degré de liberté ddl** entre les corps d'une chaîne cinématique.

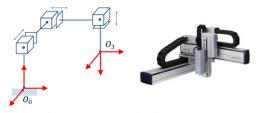
 Degrés de liberté d'une liaison : C'est le nombre de déplacements élémentaires indépendants autorisés par cette liaison.



- Articulation prismatique, noté P. 1 ddl en translation T_z et la valeur articulaire q = longueur[m].
- ▶ Articulation rotoïde, noté R. 1 ddl en rotation R_z et la valeur articulaire q = angle[rad], [deg].

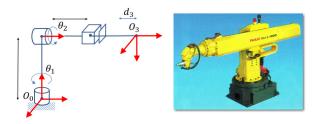
Exemples sur la morphologie des robots

Le porteur cartésien PPP : 3 articulations prismatiques non parallèles.

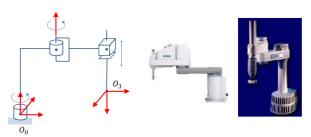


(à gauche) Schématisation d'un porteur PPP. (à droite) Robot cartésien Toshiba BA-II.

Le porteur sphérique RRP : 2 articulations pivots d'axes perpendiculaires et 1 articulation prismatique.

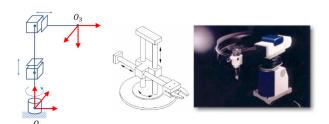


Les porteurs SCARA RRP ou SCARA PRR : 2 articulations pivots d'axes parallèles et 1 articulation prismatique. SCARA signifie *Selective Compliance Articulated Robot for Assembly*.



(à gauche) Schématisation d'un porteur RRP SCARA. (au centre) Robot SCARA Epson G10-650. (à droite) Robot SCARA d'Adept Technology.

Le porteur cylindrique RPP (R2P): 1 articulation pivot et 2 articulations prismatiques d'axes perpendiculaires.



Modélisation Géométrique directe MGD (Forward kinematics)

La Modélisation Géométrique Directe ou MGD formalise mathématiquement la chaîne cinématique et s'intéresse à relier l'espace articulaire associé aux différentes liaisons du robot, q, à l'espace opérationnel associé à la configuration X de l'organe terminal pour une tâche robotique à réaliser. Cette relation vectorielle exprime les positions et orientations des m coordonnées opérationnelles de X en fonction des n variables articulaires de q.

$$X = f(q)$$

avec f() est une fonction vectorielle dépend des variable q_i .

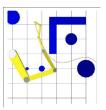
Redondance (m < n)

Un robot est dit redondant (ou globalement redondant) si la dimension m de l'espace opérationnel - correspondant au nombre de degrés de liberté de l'organe terminal - est inférieur au nombre n de variables de l'espace articulaire. C'est le cas notamment si sa structure présente une des propriétés suivantes :

- Plus de 6 articulations,
- Plus de trois articulations pivots d'axes parallèles,
- Plus de trois articulations prismatiques,
- Deux axes d'articulations prismatiques parallèles,
- Deux axes d'articulations pivots confondus.

Exemple d'application de la redondance: Évitement d'obstacle

.

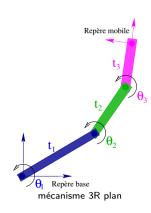


Robot planaire à 6 ddl pour une trajectoire imposée de la position de l'organe terminal tout en évitant les obstacles

Redondance locale

Pour une configuration particulière dite singulière, le robot peut devenir localement redondant, telles que le nombre de degrés de liberté de l'organe terminal soit inférieur à la dimension de l'espace articulaire.

Robot manipulateur anthropomorphe STAUBLI RX-160 à 6 ddl. La configuration verticale de l'image de droite est une redondance locale car il y a clairement plusieurs façons (plusieurs choix d'articulations) de réaliser une rotation d'axe vertical de l'effecteur.

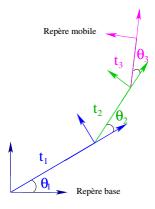


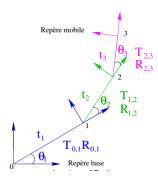
- Identifier les coordonnées articulaires
- Identifier les paramètres géométriques qui définissent le mécanisme
- Associer à chacune des articulations un repère
- Déterminer le positionnement (matrice R, vecteur P) de chaque repères par rapport au précedent.
- Mettre ces changements de repères sous la forme de matrices homogènes
- Montrer comment calculer le MGD de ce mécanisme

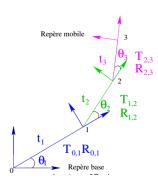
Solution

- Les paramètres articulaires sont : $q_1 = \theta_1, q_2 = \theta_2, q_3 = \theta_3$.
- Les paramètres géométriques sont $\xi = [t_1, t_2, t_3]$.
- Les paramètres cartesiens sont : X = [x, y]

▶ Associer à chacune des articulations un repère







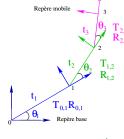
 Déterminer le positionnement (matrice R, vecteur P) de chaque repères par rapport au précedent.

$$\begin{split} R_{i,j} &= \begin{pmatrix} \cos\theta_j & -\sin\theta_j \\ \sin\theta_j & \cos\theta_j \end{pmatrix} \\ T_{i,j} &= \begin{pmatrix} t_j \cdot \cos\theta_j \\ t_j \cdot \sin\theta_j \end{pmatrix} \\ i &\in 0,1,2,j \in 1,2,3 \end{split}$$

 Mettre ces changements de repères sous la forme de matrice homogène

$$H_{i,j} = \begin{pmatrix} R_{i,j} & T_{i,j} \\ 0 & 0 & 1 \end{pmatrix}$$

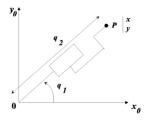
Solution



 Montrer comment calculer le MGD de ce mécanisme

$$\begin{array}{c} t_1 \\ \hline T_{0,1} R_{0,1} \\ \hline \theta_1 \\ \hline Repère base \end{array} \hspace{0.5cm} H_{0,3} = \begin{pmatrix} \cos\theta_1 & -\sin\theta_1 & t_1.\cos\theta_1 \\ \sin\theta_1 & \cos\theta_1 & t_1.\sin\theta_1 \\ 0 & 0 & 1 \end{pmatrix} \times \dots \\ \begin{pmatrix} \cos\theta_2 & -\sin\theta_2 & t_2.\cos\theta_2 \\ \sin\theta_2 & \cos\theta_2 & t_2.\sin\theta_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_3 & -\sin\theta_3 & t_3.\cos\theta_3 \\ \sin\theta_3 & \cos\theta_3 & t_3.\sin\theta_3 \\ 0 & 0 & 1 \end{pmatrix} \\ = \begin{pmatrix} \cos\left(\theta_1 + \theta_2 + \theta_3\right) & -\sin\left(\theta_1 + \theta_2 + \theta_3\right) & t_1.\cos\theta_1 + t_2.\cos\left(\theta_1 + \theta_2\right) + t_3.\cos\left(\theta_1 + \theta_2 + \theta_3\right) \\ 0 & 0 & 1 \end{pmatrix} \\ X = \begin{pmatrix} t_1.\cos\theta_1 + t_2.\cos\left(\theta_1 + \theta_2\right) + t_3.\cos\left(\theta_1 + \theta_2 + \theta_3\right) \\ t_1.\sin\theta_1 + t_2.\sin\left(\theta_1 + \theta_2\right) + t_3.\sin\left(\theta_1 + \theta_2 + \theta_3\right) \\ \theta_1 + \theta_2 + \theta_3 \end{pmatrix} \\ \theta_1 + \theta_2 + \theta_3 \end{pmatrix}$$

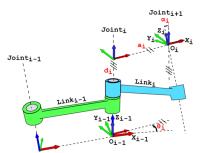
Soit le manipulateur évoluant dans un plan et décrit dans la figure suivante:



- Déterminer le modèle géométrique direct X = f(q) avec $X = [x, y]^T$.
- ▶ Trouver l'expression inverse q = g(X).

Convention de Denavit-Hartenberg

Quand l'architecture de la structure mécanique est plus complexe, il faut une méthode systématique. La convention de Denavit-Hartenberg (D-H) permet de construire itérativement l'ensemble des transformations de la structure. Elle s'appuie sur l'hypothèse de liaisons prismatique ou rotoïde entre les corps. Chaque transformation géométrique A^i_{i-1} entre les repères orthonormés (R_{i-1}) et (R_i) des corps rigides successifs (C_{i-1}) et (C_i) est décomposée en quatre transformations élémentaires (RTTR):



$$A^{i-1}_{\ i} = \begin{bmatrix} c\theta_i & -s\theta_i & 0 & 0 \\ s\theta_i & c\theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$egin{array}{ccccc} 1 & 0 & 0 & 0 \ 0 & c heta_i & -s heta_i & 0 \ 0 & s heta_i & c heta_i & 0 \ 0 & 0 & 0 & 1 \ \end{array}$$

$$= \begin{bmatrix} c\theta_i & -s\theta_i c\alpha_i & s\theta_i s\alpha_i & ac\theta_i \\ s\theta_i & c\theta_i c\alpha_i & -c\theta_i s\alpha_i & as\theta_i \\ 0 & s\alpha_i & c\alpha_i & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

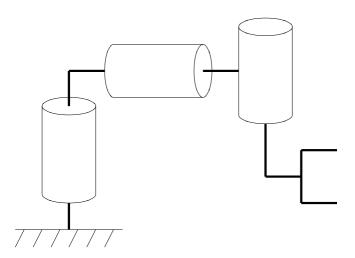
Procédure de DH

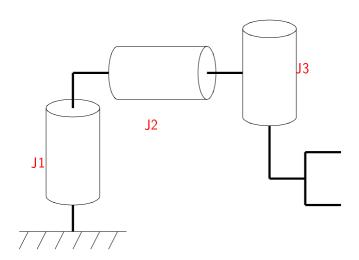
- 1 Numéroter les articulations de J_1 jusqu'à J_n en commençant par la base et en terminant par la dernière articulation.
- 2 Établir un repère, numéroté O_0 à la base ayant sont z_0 aligné avec l'axe de rotation du joint J_1 . x_0 et y_0 sont choisis en vérifiant la règle de la main droite.
- 3 Placer l'axe z_i aligné avec l'axe du joint j_{i+1}
- 4 Placer l'origine O_i , l'intersection z_{i-1} avec z_i . S'il n'y a pas d'intersection, utiliser l'intersection de z_i avec la normale commune à z_i et z_{i-1} .
- 5 Choisir x_i orthogonale à z_i et z_{i-1} si ces deux axes intersectent. Si z_i et z_{i-1} sont parallèles, choisir x_i parallèle au perpendiculaire commun de z_i et z_{i-1} en s'éloignant de z_{i-1} .
- 6 Établir le repère de l'effecteur final $O_{n_{x_n y_n z_n}}$.
- 7 Établir y_i pour compléter un repère de la main droite.
- 8 Placer le point b_i à l'intersection de x_i et z_{i-1} . S'il n'y a pas d'intersection, utiliser l'intersection de x_i avec la normale commune en x_i et z_{i-1} .

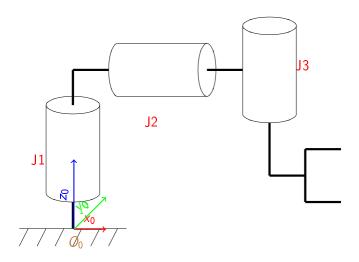
Les paramètres de D-H

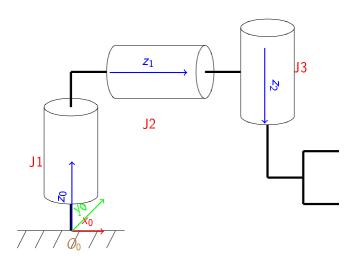
Créer un tableau des paramètres θ_i , d_i , a_i et α_i définis comme suit:

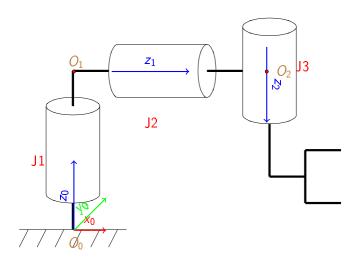
- Évaluer l'angle θ_i pour la rotation de x_{i-1} à x_i mesuré par rapport à z_{i-1} .
- ▶ Évaluer d_i , la distance de l'origine du repère i-1 au point b_i mesuré au long de z_{i-1} .
- ▶ Évaluer a_i , la distance du point b_i à l'origine du repère i mesuré le long de x_i .
- Évaluer l'angle α_i pour la rotation de z_{i-1} à z_i par rapport à x_i .



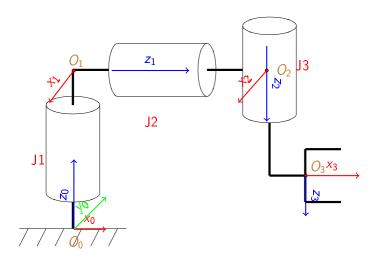


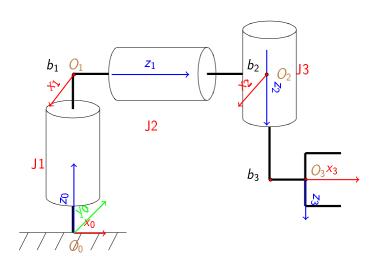












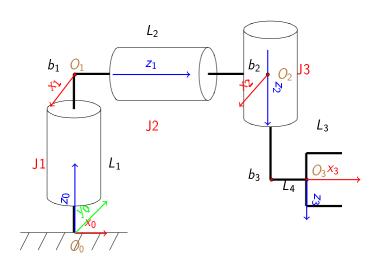


Table 1: Les paramètres de DH

Joint	θ_i	di	aį	α_i
J_1	$\theta_1 - \frac{\pi}{2}$	I_1	0	$-\frac{\pi}{2}$
J ₂	θ_2	I_2	0	$-\frac{\pi}{2}$
<i>J</i> ₃	$\theta_3 - \frac{\pi}{2}$	l ₃	14	0