Tutorial Series N•4

Exercise 1

A. Predict the sign of $\Delta S_{\text{reaction}}$ (positive or negative) for the following reactions:

One mole of liquid water at room temperature \rightarrow one mole of liquid water at 50°C

B. Which of the following processes are accompanied by an increase in entropy?

1) evaporation of water - 2) precipitation of AgCl(s) - 3) condensation of water vapour to ice - 4) mixing of natural gas (CH₄) and air - 5) dissolution of KBr(s) in water

Exercise 2

 NF_3 is a synthetic gas that is a powerful greenhouse gas (GHG) with a global warming potential (GWP) 17,000 times greater than that of CO_2 (over 100 years) and a lifetime in the atmosphere of 740 years.

Predict the sign of ΔS° , then calculate the value of ΔS° for the reaction, using the following data:

 $N_{2~(g)}+3~F_{2~(g)}\rightarrow 2~NF_{3~(g)}$

Substance	S _{298K} ° (J/mol•K)
F ₂ (g)	203
N ₂ (g)	192
$NF_{3}(g)$	261

Exercise 3

Determine the change in entropy when one mole of ice at -10° C is transformed into one mole of water at 25°C under atmospheric pressure.

Given: Normal melting temperature of ice $t_f = 0^{\circ}C$

Latent heat of fusion or enthalpy of fusion of ice $L_F = \Delta_F H_{273,15K}^{\circ} = 6019 \text{ J mol}^{-1}$ C_p(ice)=37,62 J mol⁻¹K⁻¹; C_p(water)=75,24 J mol⁻¹K⁻¹

Exercise 4

A.

1. Calculate ΔS°_{298K} the entropy change of the following reaction:

 $H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2 O_{(g)}$

knowing that:

2. For this same reaction, what would be the change in entropy (ΔS°_{800K}) at 800 K. *We give* : $C_p(H_{2(g)})= 6.9$ cal mol⁻¹K⁻¹, $C_p(O_{2(g)})= 7.0$ cal mol⁻¹K⁻¹ et $C_p(H_2O_{(g)})= 8.0$ cal mol⁻¹K⁻¹

B. Calculate the entropy change that accompanies the preparation of a mixture of ideal gases made up of 1.00 moles of oxygen and 2.00 moles of hydrogen, in the absence of a chemical reaction and when the process is isothermal.

Exercise 5 (for students)

Combustion of methane leads to the following reaction:

 $CH_4(g) + 2O_{2(g)} \longrightarrow CO_2(g) + 2H_2O(l)$

Calculate for this reaction under standard conditions:

- 1. The standard entropy change of reaction $\Delta_r S_{298K}^{\circ}$
- 2. The standard entropy change $\Delta_r S_T^{\circ}$ at T=373,15 K

Data: R= 8,314 J.mol⁻¹.K ⁻¹

Compounds	CH ₄ (g)	O ₂ (g)	CO ₂ (g)	H ₂ O(l)
S°298K (J.mol ⁻¹ K ⁻¹)	186,26	4205,14	213,74	69,91
C _p (J.mol ⁻¹ K ⁻¹)	35,31	29,36	37,11	75,29

Exercise 6

Calculate the standard free enthalpy ΔG° at 25°C of the following reaction:

 $N_2(g) + O_2(g) \rightarrow 2NO(g)$

In an aqueous medium and in acidic solution, hydroxylamine NH₂OH is capable of fixing a proton in an instantaneous equilibrium to give the hydroxylamonium ion

 NH_3OH^+ (protonation reaction) : $NH_2OH_{(aq)} + H^+_{(aq)} = NH_3OH^+_{(aq)}$

Calculate the standard free enthalpy of the reaction.

Data : $\Delta_f G^{\circ}(NH2OH) = -23,35 \text{kJ} \cdot \text{mol}^{-1}$; $\Delta_f G^{\circ}(NH3OH+) = -57,61 \text{kJ} \cdot \text{mol}^{-1}$; $\Delta_f G^{\circ}(H+) = 0 \text{ kJ} \cdot \text{mol}^{-1}$

Exercise 7

Calcium carbonate CaCO₃ (s) decomposes according to the reaction :

$CaCO_3 (s) \rightarrow CaO (s) + CO_2 (g)$

a) Is this reaction thermodynamically possible under standard conditions? The enthalpy and entropy of the reaction are assumed to be independent of temperature. The following are given: the molar enthalpies of formation and the absolute molar entropies in the standard state:

	CaCO ₃ (s)	CaO	CO ₂
$\Delta H^{\circ}_{f,298K}$ (KJ.mol ⁻¹)	-1210.11	-393.14	-634.11
S°298K (J.K ⁻¹ .mol ⁻¹)	92.80	213.60	39.71